Study Meeting 3: Electron detectors

Zuben P. Brown & Prikshat Dadhwal

Summary of Electron lenses

- Two different types:
 - 1. Electrostatic lenses
 - 2. Electromagnetic lenses
- Lens aberrations
 - 1. Spherical aberration
 - Hexapoles, etc
 - 2. Astigmatism
 - Careful beam alignment / Stigmators
 - 3. Chromatic aberration
 - Energy filters, FEGs

Film & CCD Cameras

- Electrons cause exposure of film
- CCD never had large impact
- Mismatch between scintillator and fiber optics

Ruijter (1995) Micron, 26(3):247

Film & CCD Cameras

- Electrons cause exposure of film
- CCD never had large impact
- Mismatch between scintillator and fiber optics

Ruijter (1995) Micron, 26(3):247

Direct Electron Detector

McMullan, Faruqi, Henderson (2016) Methods in Enzymology, Vol. 579

Why are DEDs so much better?

- No scintillation layer
- Reduced shot noise
- Backscattering
- Faster readout \rightarrow Motion correction
- Electron counting \rightarrow Reduce coincidence loss

SO-163 film

 \rightarrow Landau problem

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Ruijter (1995) Micron, 26(3):247 McMullan, Chen, Henderson, Faruqi (2009) Ultramicroscopy. 109:1126

Reducing backscattering

McMullan et al. 2009 Ultramicroscopy 109:1144

Backscattering

• Thick back layer in early DED

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

McMullan et al. 2009 Ultramicroscopy 109:1144

Motion Correction

Single frame

Direct alignment

MotionCor1

McMullan, Faruqi, Henderson (2016) Methods in Enzymology, Vol. 579

MotionCorr2

 Does global and local (patch) alignment

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Zheng *et al.* (2017) Nat. Meth. 14(4):331

Coincidence loss

COLUMBIA UNIVERSITY

CITY OF NEW YORK

K2 counts each electron rather than the charge of each pixel which eliminates the Landau noise (as each pixel could be a sum of different electrons)

8 e⁻/px/s is really 10 e⁻/px/s

Li *et al.* (2013) Nat. Meth. 10(6):584

Camera performance

- Modulation Transfer Function (MTF)
 Envelope function of the camera
- Detector Quantum Efficiency (DQE)

 $DQE = (S/N)^{2}_{OUT} / (S/N)^{2}_{IN}$

IN THE CITY OF NEW YORK

00

Ultramicroscopy. 109:1126

00

Ultramicroscopy. 109:1126

Calculating the DQE

- Complicated
- Partially related to the MTF
- Read: McMullan, Chen, Henderson, Faruqi (2009) Ultramicroscopy. 109:1126

DQE

00

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

 Measures how strong the signal will be relative to the noise at a certain spatial frequency.

The DQE relates the level of instrumentation noise to the level of inherent shot noise in the image. It is therefore *the* tool to quantify detector instrumentation noise. The noise in the recorded image follows by

> Ruijter (1995) Micron, 26(3):247

> > McMullan *et al.* (2014) Ultramicroscopy, 147:156

MTF & DQE

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

McMullan *et al.* (2014) Ultramicroscopy, 147:156

- DED are better
 - Shot noise
 - Back thinning
 - Motion correction
 - Coincidence loss
- MTF: the camera envelope function
- DQE: Input SNR to output SNR

Next session

• Image formation / CTF

