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Abstract

Single-particle reconstruction is the process by which 3D density maps are obtained from

a set of low-dose cryo-EM images of individual macromolecules. This review considers

the fundamental principles of this process and the steps in the overall workflow for single-

particle image processing. Also considered are the limits that image signal-to-noise ratio

places on resolution and the distinguishing of heterogeneous particle populations.

Key words: 3D reconstruction, SNR, noise

Introduction

‘Any sufficiently advanced technology is indistinguishable
from magic’. From the perspective of Arthur C. Clarke’s
Third Law [1], cryo-EM single-particle reconstruction (SPR)
might rightly be considered a very advanced technology. One
starts with a set of perhaps 100 000 hopelessly noisy-looking
images of single macromolecular ‘particles’, and by a seem-
ingly magical process —typically requiring thousands of
CPU-hours on a computer cluster—the end result can be one
or more 3D density maps from which atomic structures can
be determined.

The success of SPR is made possible by two astonishing
phenomena. First, in many cases individual rapidly frozen
macromolecules are so consistent in conformation that the
positions of atoms are superimposable within a few angstroms
from copy to copy. This consistency allows information to
be combined from images of ensembles of these particles to
provide the final density map. Second, even the very noisy
images obtained from low-dose imaging of the cryo-EM spe-
cimen can contain in themselves enough information to allow

the orientation of the underlying particles to be determined.
These two phenomena, coupled with recent advances in
image acquisition technology, statistical estimation theory and
algorithm development, are allowing single-particle cryo-EM
methods to move rapidly into the mainstream of structural
biology.

The goal of this review article is to provide an overview of
the processing that takes particle images to density maps. The
emphasis is on the statistical methods that are embodied in
the program Relion [2], which has been used for the majority
of recent high-resolution reconstructions. Not addressed here
is the process of fitting of atomic models to density maps, nor
the very important issue of validating these models. For
practical details, more rigorous theory and more complete
reviews of the literature, the reader is encouraged to consult
the recent reviews by Cheng et al. [3], Elmlund and Elmlund
[4] and Nogales and Scheres [5].

Figure 1a shows one of the cryo-EMmicrographs obtained
by Liao et al. [6] in their pathbreaking work on the TRPV1
ion channel. Owing to electron-counting technology and
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motion correction, these micrographs have particularly good
signal-to-noise ratios (SNRs) and contain information beyond
3.4 Å resolution. The formation of an individual particle
image (Fig. 1b–d) can be modeled as a projection of the 3D
molecular density, which in turn is modified by the
contrast-transfer function (CTF) of the defocused microscope.
The recorded image is very grainy due to the random counting
noise from the low dose of electrons used. An ensemble of
thousands of high-quality particle images like this can contain
the information to make an atomic-resolution reconstruction
of the particle density, but the atomic-resolution information
in an individual particle image cannot be evaluated. This is
because the spectral SNR of a particle image is below unity—
there is more noise than signal— for details finer than about
16 Å (Fig. 1e) in this dataset. In general,

The high-resolution content of an individual particle

image cannot be measured.

The only way to characterize the quality of single-particle
data is by collecting statistics on sets of images, for example
by computing averages or variances. The relevant averages
are 2D class averages, or a 3D reconstruction; for measuring

the variance, the power spectrum of an image stack can be
computed, whereas the variance and covariance of 3D
reconstructed volumes can also be computed. These mea-
sures of data quality are much less direct than what is pos-
sible from crystallographic experiments, where the raw data
are diffraction patterns and the presence of high-resolution
spots directly indicates high-quality data.

Theory of SPR

Before going into more technical topics, we first will consider
the basics of SPR. Conceptually, there are two pieces to SPR.
One, which is common to computed tomography in its many
forms, is the construction of a 3D map from projection
images. The other, unique to SPR, is the prerequisite step of
determining projection angles from the projection images
themselves.

Basics of 3D reconstruction

The goal is to determine the 3D density of an object from a set
of 2D tomographic projections. Suppose a 3D density map M
is represented as values on a 3D grid of size n× n ×n. There is a

Fig. 1. Cryo-EM micrograph and a particle image. (a) One quarter of a micrograph from the TRPV1 dataset of Liao et al. [6] with selected particles

marked by boxes. (b), Boxed image (256 pixels on a side, pixel size 1.22 Å) of the particle marked with a thick box in (a). (c) Corresponding projection

of the 3D map of the TRPV1 protein, computed according to the angles assigned to this particle image by the Relion reconstruction program [2].

TRPV1 is a membrane protein, here solubilized by amphipols, and the viewing direction is approximately in themembrane plane; the transmembrane

region is at the lower right. (d) Simulated noiseless particle image, obtained by operating on the projection image with the fitted contrast-transfer

function. Note the arcs extending from the particle due to signal delocalization from the substantial defocus δ = 2.2 µm. The electron wavelength is

λ = 2 pm at 300 keV, and image features of characteristic size (resolution) d = 3.5 Å are expected to be delocalized by about λδ/d = 120 Å; hence the

need for a large boxed image size. (e) Average particle spectral signal-to-noise ratio [7] computed from Fourier ring correlations between

phase-flipped particle images and map projections. For display, images in (a) and (b) were Gaussian filtered with half power at 20 and 11 Å,

respectively. Data are frommicrograph 21 and particle image 4 in the EMPIAR database entry, http://dx.doi.org/10.6019/EMPIAR-10005.
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density value associated with each voxel of the map. The value
of each pixel of a projection image I can be obtained as the sum
of the density values on a line passing through the map. A cryo-
EM particle image is, at root, a projection image like this.

There are various methods for 3D reconstruction from
projection images [8] although an instructive and widely
used method makes use of the Fourier slice theorem. This
theorem can be summarized in the following way.

A density map having n3 voxels has an equivalent re-
presentation, called its Fourier transform (FT). The FT is also
an n × n × n array of numerical values. We denote the FT ofM
by M̂; it contains all the information of the original map. The
FT has the special property that if all of its voxels outside a
sphere of radius R are set to zero, the remaining nonzero
voxels contain the information of the original map, but only
up to a resolution R (expressed in appropriate spatial-
frequency units such as Å−1). There is likewise a Fourier trans-
form for 2D images; the FT of an image Iwewill call Î.

The Fourier slice theorem is a statement about the rela-
tionship between a 3D map and a 2D projection image of
that map. It says: if projection image I is obtained by project-
ingM along a particular direction p, then the values of Î will
be identical to the values of M̂ on a slice through that Fourier
volume; that slice is taken on a plane that passes through the
Fourier origin and is normal to p.

The Fourier slice theorem suggests a strategy for building
up a 3D density map from projection images. The steps are
as follows:

1. Obtain a large set of projection images Ij, with Pj being
the corresponding projection vectors.

2. Compute the Fourier transforms Îj.
3. In the 3D Fourier space, for each pj, define a plane pj

that includes the origin and is perpendicular to pj.
4. Assign voxels of M̂ by constraining the values on each

slice plane Pj to be equal to the values of Îj.
5. Convert M̂ back toM by the inverse Fourier transform.

That is all there is to it, except for details. One is the technical
problem of interpolation, as the grid of pixels on the Fourier
image Ij does not necessarily match the grid of voxels selected
by a slice. Good solutions to this problem have been found.
A second, more fundamental issue is the problem of incon-
sistent values: what should we do when pixels from two
images Îj and Îk correspond to the same voxel in the 3D
Fourier volume, but the pixel values are not equal? The solu-
tion is some sort of weighting scheme for merging informa-
tion in assigning voxel values.

Third, what happens if the set of slice planes does not
adequately cover the Fourier volume, but leaves some voxels
unassigned? The results are phenomena known as the ‘missing
wedge’, ‘missing cone’ and ‘preferential orientation’ artifacts,
which give rise to anisotropic resolution in the reconstruction.

Finally, there is the issue of CTF correction. Cryo-EM
images are typically acquired using defocus contrast. This is a
primitive form of phase-contrast imaging where the micro-
scope’s objective lens is intentionally focused beyond the speci-
men by a distance of a few microns. The resulting image can
be modeled by an ideal phase-contrast image that is modu-
lated by a variable scaling of its Fourier components. The
scaling factors are called the CTF. It is not possible to remove
the effects of the CTF from an image, because at certain fre-
quencies the CTF is zero and therefore no information is
present at all at these frequencies. However, it is straightfor-
ward to include CTF effects in 3D reconstruction. The value at
a given Fourier voxel is assigned according to a weighted
average of all of the relevant Fourier pixels of the contributing
images. The weights are chosen to be positive, negative or zero
depending on the sign and magnitude of the CTF at the image
pixel position, so that images having the strongest contrast
make the largest contribution to the voxel value. In this way,

CTF effects are readily handled when information is

combined frommultiple images.

Determination of particle orientations

For each projection image, we must know the projection vector
so that we can insert the Fourier values in the correct plane. In
standard SPR, the projection vectors are completely unknown,
because the individual particles are oriented randomly. It is the
determination of the particle orientations that is the difficult
part of SPR. Generally, it is carried out by projection-matching
(see, for example, [9]). One starts with an initial estimate of the
3D map. Reference images are obtained by computing the pro-
jection of this map in an extensive set of projection directions.
Then a given single-particle image is compared with each refer-
ence, and the projection vector of the best-matching reference is
the one assigned to this particle image.

The refinement of a SPR then proceeds iteratively. Given
an initial 3D model, projection vectors are assigned to all of
the particle images, and then a 3D reconstruction is per-
formed. This serves as the new 3D model, and the process is
iterated perhaps a few dozen times.

The projection-matching process is not very complicated,
but it takes vast amounts of computer time. It is instructive
to see how steeply the computational intensity scales with
resolution. Suppose that we determine for a roughly spher-
ical particle of diameter D a map with minimum feature
size (resolution) d. Each single-particle image should then
be at least n × n pixels in size, with n = 2D/d. Although to
adequately sample the Fourier volume for a particle of
s-fold symmetry, one needs only about πn=s projection
directions; to assign an appropriately precise projection
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direction to each particle image, we must instead test πn2=s
projection directions for each one.

Because the location of each particle in the micrograph is
not known exactly—say up to an uncertainty of t pixels—
the comparison of a particle image with each reference pro-
jection requires the testing of t2 translational shifts and also
πn different in-plane rotations; and each one of these com-
parisons requires n2 operations, one for each pixel. For m
particle images, the number of computer operations is then
very roughly

nc ¼ t2π2n5m=s:

Since n is proportional both to particle size and to reso-
lution, we find that

The computational complexity of SPR increases very

steeply with the particle size and the resolution.

For a particle of diameter D = 120 Å and a target reso-
lution d = 3 Å, the minimum image size would be n = 80.
Given a dataset of m = 30 000 particles with s = 4 and
t2 = 25, nc = 6 × 1015. This corresponds to about 1600 CPU-
hours at 109 CPU operations per second.

This rough estimate does not account for oversampling
of image data or the extra overhead involved in the statis-
tical weighting of images in reconstructions. On the other
hand, this estimate also does not take into account compu-
tational gains from algorithmic improvements, and indeed
none of the widely used refinement programs require as
much computer time as we have estimated here. The com-
plexity of the in-plane rotation and image comparison steps
can be reduced from πn3 to n2 log n or fewer operations
through the use of polar Fourier transforms [10] spherical
harmonics [11] or steerable basis functions [12]. The
number of references to be compared with each image can
be reduced substantially through local search strategies
([2,13]; and many others). The cost of comparisons can be
decreased through reduced representations of images and
volumes [14]. In the end, it appears that the complexity can
be reduced substantially, but it seems unlikely that nc can be
reduced below the order of n3m/s.

Even in the case of a relatively small particle with D =
120 Å, orientation assignments that preserve informa-
tion at d = 3 Å must be accurate to small angles, within
sin�1ðd=DÞ ≈ 1:5W to avoid mixing of information between
adjacent Fourier voxels. Can projection matching perform
this well? Figure 2 shows the result of a simulation of
projection-matching based on two particles in the micro-
graph of Fig. 1. In view of the 3.4 Å reconstruction obtained
by Liao et al. [6] from this dataset, it is no surprise that
angles were retrieved with an acceptable error of 1.7° when

the simulated images had the same noise level as the experi-
mental particle images. When simulated with higher noise
yielding half the SNR, the angle errors doubled to 3°; errors
of this size would limit the resolution of a 3D reconstruction
to about 6 Å. With another 2-fold reduction in SNR, the
angle errors became very large, too large for even low-
resolution 3D reconstruction. From this simulation, it
appears that the signal in these images was just sufficient to
allow a high-resolution reconstruction to be obtained.

It is astonishing that projection-matching can perform so
well. Visually, it would seem impossible to distinguish, on the
basis of even the SNR = 1 particle images in Fig. 2a and d, the
pairs of very similar reference projections shown in Fig. 2c
and f. Nevertheless, the accuracy of projection-matching
degrades very rapidly at lower SNR levels.

Statistical weighting of projections

Maximum-likelihood and other statistical approaches to the
SPR problem are able to deliver good results despite moder-
ate errors in orientation assignments. They do this by avoid-
ing the direct assignment of an orientation to a particle
image, but instead use a ‘fuzzy’ assignment based on com-
puted probabilities of orientations. The probabilities of the
orientations for a particle image are used as weights in
applying the information from that image in the 3D recon-
struction [2]. Furthermore, some particle images have more
signal or for other reasons give more reliable orientations
than others; it is advantageous in the 3D reconstruction
to assign stronger weights to them based, for example, on
correlation coefficient values [13].

Model bias

From a mathematical standpoint, SPR is a very challenging,
nonlinear optimization problem. The goal is to obtain the
3D structure, that is the roughly 106 voxel values in a 3D
density map, from perhaps 109 very noisy pixels in a dataset
of particle images. To solve the structure, ideally one would
examine all possible density maps and pick the single one
that best matches the dataset, given a scoring function such
as the squared error or the likelihood. A complete search of
all possible 3D maps is currently impossible, and at present
the main approaches are local optimization algorithms: they
start with an initial model of the structure, and iteratively
refine it. The iterations improve the value of the scoring
function, but there is no guarantee that at convergence the
score that is obtained is the global optimum. Of interest in
this respect is the employment of techniques like stochastic
hill-climbing [15]; these allow what is otherwise a conven-
tional least-squares optimization to escape from being
trapped in a local minimum. Even these algorithms however
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are not guaranteed to find the global minimum squared
error. In practice, we are faced with this phenomenon:

Model bias means that the final structure is influenced by

the initial model.

When the data quality is high, convergence to the global
optimum is quite reliable and initial models such as smooth
ellipsoids or random densities result in correct structures.
However, when the SNR of the images is low or when
preferential particle orientation causes the strong over-
representation of certain projection directions, model bias
can be severe. Model bias in SPR results from misassignment

of particle orientations and can be avoided—or identified—
by several methods.

First, one can start with an ab initio model derived from
the particle images. Orientations can be assigned on the
basis of ‘common lines’ on intersecting planes in the 3D
Fourier transform [16,17], and models can be generated
by the global, simultaneous assignment of angles [18] or
by stochastic clustering approaches [19]. Alternatively,
one can initiate the refinement process with a reliable
model obtained by a data-collection technique that directly
provides orientation-angle values. Random conical tilt
reconstruction [20] and subtomogram averaging [21] are
methods where calibrated tilts of the specimen stage provide
good starting models.

Fig. 2. Angle assignment errors. Two particles from the micrograph in Fig. 1 were chosen as representative. They are approximately side views with

tilt angles θ = 160° and 80° and spin angles ϕ ¼ 31
W

and 70°. Sets of 10 000 simulated particle images were computed with noise variance either

matching that of the actual particles (labeled SNR= 1) or variance that is larger by a factor of 2 or 4, yielding the relative SNR values of 0.5 or 0.25. In

rows (a) and (d), images with reversed contrast (protein is white) are shown after Gaussian filtering at 15 Å. Orientation angles were obtained by

projection-matching for each image. (b and e) Contours enclosing 50% of the estimated angle values are shown for the two particles at three SNR

values. In each plot, the thickest contour line corresponds to SNR = 1, where the standard deviation of errors in both angles was 1.7°. At SNR= 0.5, the

errors had a standard deviation of 3° while at SNR = 0.25 angle errors of 10° or more were common, as shown by the thin contour lines. In rows (c and

f), simulated noiseless images corresponding to central (+) and outlying (X) angle assignments demonstrate the subtlety of differences between

projections at these angles. Angles, CTF parameters and estimated SNRwere taken from particles 17 and 4 in the same dataset as that used in Fig. 1.
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Another approach is, post hoc, to test the reliability of
angle assignments using tilt-pair analysis [22]. The introduc-
tion of a known magnitude of stage tilt should result in angle
assignments shifting by the same amount, and verification
of these shifts greatly increases the confidence that angle
assignments are valid. Finally, one comfort is that the gross
misassignment of angles generally results in low-resolution
reconstructions. Thus, it is to be hoped that an interpretable,
high-resolution map is unlikely to suffer frommodel bias.

The image-processing pipeline

Having described the SPR process, we now turn to other
steps involved in obtaining density maps from micrographs.

Particle picking

A cryo-EM micrograph contains randomly arranged parti-
cles along with non-particles—bits of frost, deformed
particles, protein aggregates and so on. Traditionally, the
particle locations are identified or ‘boxed’ using a particle-
selection program having both interactive and automatic
functions. An example is E2Boxer [23] where the user can
click on the obvious particles in a displayed micrograph;
from the coordinates, the program extracts small square
regions (boxes) of the micrograph, which are then collected
into a ‘stack’ of particle images. Programs typically include
an auto-picker function where 2D or 3D particle models are
used to identify particles automatically. A remarkably suc-
cessful generic 2D model is the ‘difference of Gaussians’,
where a broad 2D Gaussian function of negative amplitude
is subtracted from a narrow 2D Gaussian of positive ampli-
tude [24]. The result is a pattern of a circular white object
with a dark surround, similar in overall appearance to the
(inverted-contrast) image of a particle with its surrounding
undershoot of image intensity caused by the CTF. More
sophisticated 2D particle models are created as rotational
averages from a manually picked particle set or from projec-
tions of an initial 3D particle model. The models are used
as references to build correlation-coefficient or likelihood
maps in which the peaks are taken to identify particles. The
user controls one or more threshold values, which set the
discrimination of particles from non-particles.

With model-based auto-picking comes the danger of 2D
model bias. Specifically, if a detailed particle model is used
as the reference to identify particles, then the particle stack
will, through biased selection of positions in the micro-
graph, consist of images that best match the reference. Even
if the micrograph contains no particles, the selected boxes
of noise can show features of the reference when averaged
together [25]. Fortunately, if there are true particles with
high SNR in the micrograph, they will predominate in the
automatic picking process. At the present state of the art, it

seems that machines are always less reliable than humans at
picking particles, and thus:

If you cannot see and recognize the particles, most likely

there are not any.

CTF determination

Compensation for the CTF of particle images can be per-
formed at the reconstruction stage, as we considered above.
The CTF is a function that oscillates rapidly, with some
Fourier components transferred with positive contrast and
others with inverted contrast. With 1 µm of defocus, the
first zero of the CTF, for 300 keV imaging, is at the spatial
frequency of (14 Å)−1. (In the following, we shall just
denote the frequency by its reciprocal, 14 Å in this case.) At
twice the resolution (7 Å), the CTF has gone through four
reversals, and at four times the resolution (3.5 Å) it has gone
through 16 reversals. If the defocus is greater, the density
of reversals increases proportionately, so that at 4 µm of
defocus the number of reversals at each resolution is quad-
rupled. Higher defocus is advantageous for visualizing,
picking and determining the orientation of small particles
because it preserves more of the signal at the lowest spatial
frequencies, roughly 200 Å to 20 Å, which are best for
recognizing and orienting particles. However, with high
defocus the increased density of contrast reversals requires a
more precise modeling of the CTF. Astigmatism, which
turns the circular rings in the CTF into ellipses, must also be
modeled correctly [26]. The overall precision required can
be appreciated in that a defocus error of 124 nm yields a
complete reversal in the polarity of the CTF at 3.5 Å; thus
errors of this size can cause the signal to vanish when infor-
mation from different images are combined. Fortunately,
there are several programs that quickly and accurately deter-
mine the CTF parameters from micrographs [27] for use in
subsequent image processing and reconstruction steps.

2D Classification of particle images

Both the low SNR of individual cryo-EM images and the
distortion due to CTF effects make it difficult to evaluate the
images in a particle stack. The clustering of similar particle
images (a process commonly termed 2D classification) and
calculation of class-average images is a good way to see
what a dataset contains; secondary-structure elements such
as alpha-helices are routinely visible in the class images
from high-resolution data.

The clustering of similar particle images was first intro-
duced by van Heel and Frank [28] and the problem has
received much attention; for a recent comparison of methods,
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see Zhao and Singer [12]. Described here is the maximum-
likelihood 2D classification implemented in Relion [2]. One
starts with a set of random ‘reference’ images. Then for each
particle image, probabilities are computed with respect to its
rotation, translation and the degree of matching to each refer-
ence. Translated and rotated particle images are formed, and
their 2D Fourier transforms, appropriately weighted by the
CTFs, are combined to form the overall average images.
These averaged images are taken to be a new set of references,
and the procedure is iterated a few dozen times. The result is a
set of representative averaged images that underlie the dataset.

2D classification is very similar to SPR. In both cases,
each particle image is aligned and tested against a set of
reference images, and then the reference set is updated. The
only difference is that in SPR, the updating of the references
occurs through the process of 3D reconstruction; this en-
forces a strong self-consistency constraint, as all the refer-
ences come from the same 3D volume. On the other hand,
2D classification lacks this constraint.

SPR and 2D classification are similar processes, except

that the former includes the constraint of consistency

with a unique 3D structure.

Starting with random seeds and having no self-consistency
constraint, the process of 2D classification does not converge
to a unique or reproducible set of class-average images; at best
one takes the set to be representative of the variety of images
contained in the dataset. Classification is useful, however, as
artifactual images (frost balls for example) tend to be grouped
together in the classifications, so their exclusion is readily
done by marking all members of an aberrant class as ‘bad’
particles and excluding them from further processing.

2D classification gives an early impression of heterogen-
eity in a dataset. Sometimes, it is possible to recognize views
of particles in different conformations or different sizes, and
use the 2D class identities to sort the individual particle
images in a process called ‘supervised classification’. The
class average images also portray the variety of viewing
directions available in a dataset. For example, it is straight-
forward to distinguish ‘top’ from ‘side’ views of symmetric
particles, and the symmetry point group is sometimes
apparent. Top views of particles having cyclic symmetries
show rotational symmetry, whereas the corresponding side
views can have internal mirror symmetry.

3D Classification, heterogeneity and the

identifiability problem

One of the astonishing features of SPR is that many macro-
molecules can be frozen such that atomic positions are
consistent within a few angstroms from copy to copy.

Nevertheless, the general experience with high-resolution
structures shows that every population of particles has some
heterogeneity, and by selecting a consistent subset of particle
images higher resolution can be obtained. Subtle differences
in structures can be discovered and sorted through simultan-
eous SPR using multiple 3D models, a process called 3D
classification. Because it is sometimes possible to distinguish
different macromolecular species as well as different confor-
mations in 3D classification, in cryo-EM structure determin-
ation there is also the promise of purification in silico, where
the particles in a biochemically impure specimen are sorted
out by computer.

The classification of 3D models is similar in principle to
the 2D classification of images. When implemented in the
process of SPR using statistical weighting, the set of probabil-
ities computed for each particle image also includes the prob-
ability that the image arises from each of several different 3D
densities. After multiple iterations of refinement, the assign-
ment of each particle image to a particular 3D model is
usually unambiguous, and separate reconstructions can be
made from the separately assigned particle stacks. 3D classifi-
cation does not work as well as one might hope: the number
of 3D models must be given in advance, and minority struc-
tures often fail to be discovered. It is common to use repeated
rounds of classification to define a population of particle
images yielding the best-resolution structure. In the end, there
seems to be much room for improvement in the automatic
sorting of particle-image populations, with one promising
alternative approach being that of Shatsky et al. [29].

One expects there to be limits to the power of classification,
having to do with the inability to distinguish, on the basis of
noisy particle images, among similar reference images arising
from different 3D maps. Distinguishing these images is an
example of the identifiability problem of statistics. Consider
the 1D problem of distinguishing between one or two popula-
tions in sets of random numbers. Figure 3a demonstrates the
case where the large standard deviation of the distributions—
the noise—is sufficient to make the overall two-population
distribution indistinguishable from that of a single population.
A small reduction of the noise (increasing the SNR by a factor
of 2) allows the two components to be distinguished and their
mean values to be determined (Fig. 3b). The same principle
holds in SPR, where small improvements in SNR can make all
the difference in distinguishing the members of heterogeneous
populations of particles.

The ability to identify and separate heterogeneous par-

ticle populations depends critically on the signal-to-noise

ratio of the images and on the magnitude of differences

among the populations.
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An individual particle image can be represented as a point
in a high-dimensional space where the number of dimensions
is equal to the number of pixels in the image. Classification of
images is then equivalent to discovering clusters of points in
this space. Finding the clusters is simplified by finding the
principal components, that is, the axes of major variation in
an ensemble of images (Fig. 3c and d).

Variance, covariance and manifolds

As an important first step in the analysis of heterogeneity, the
variance of a 3D map can be computed [30] to identify the
3D locations of ‘hot spots’ of variation. Theoretically more
useful would be the covariance of a 3D map, which tells how
variations in the density at one voxel correlate with variations
in another voxel. For example, evidence for a conformational
variation in which a structural element is found either in loca-
tion A or location B would come from a negative covariance
between the two locations in the map. Computation of the
entire covariance is entirely unwieldy (the covariance matrix

of a 106-voxel map will have 1012 entries) but techniques
have been developed recently to identify the principal compo-
nents of the covariance [31–33]. The principal components
describe individual degrees of freedom. A simple hinge
motion is described by one degree of freedom, and actual
conformational fluctuations are expected to be described well
by just a few degrees of freedom. The principal components
of the covariance then provide an informative linear approxi-
mation to the possible deformations of the structure. A com-
plete modeling of the degrees of freedom, including nonlinear
effects, can be done by constructing the appropriate low-
dimensional manifold in the space of all 3D volumes. This is
a procedure called nonlinear embedding, and it is beginning
to be applied to the cryo-EM heterogeneity problem [34].

What are the prospects for further

improvements in SPR?

SNR is the fundamental limiting factor in SPR. We saw in
Fig. 2 that a decrease in SNR reduces the precision of

Fig. 3. Illustrations of the identifiability problem in 1D and 2D. (a) Although a set of values comes from

two populations of random numbers, the resulting distribution is essentially indistinguishable from a

one-population distribution (dotted curve). (b) When the noise is variance is halved (SNR is increased), the two

populations become distinguishable in the histogram. (c) Two populations in a two-dimensional space, also not

distinguishable. (d) With twice the SNR, the principal component PC1 becomes visible, along which the two

populations are separated. It is the projection of the values along PC1 that are depicted in (b).
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orientation determination of particles; indeed, beyond a
certain limit, attempts at reconstruction will fail entirely.
With Figure 3, we argued that distinguishing populations in a
heterogeneous mixture of particles also becomes impossible
at low SNR. Increasing the size of datasets and the use of stat-
istical SPR methods can compensate somewhat for decreases
in SNR, but even with these methods SPR rapidly becomes
impractical.

SNR, evaluated as image power to noise power in single-
particle images, scales roughly proportionally to molecular
weight [35]. For most of the past decade high-resolution
structures obtained through SPR were restricted to complexes
with molecular weights well above 1 MDa. Only particles of
this size yielded images with sufficient signal to allow particle
orientations to be determined accurately. It was with the
advent of electron-counting cameras, which brought a sever-
alfold increase in SNR, the structure of smaller structures
such as the 400 kDa TRPV1 ion channel became possible. At
the time of writing, the smallest near-atomic cryo-EM struc-
ture is that of gamma secretase [36], a 120 kDa membrane-
protein complex. The particle’s irregular shape was helpful,
no doubt, in making orientation determinations more accur-
ate, but nevertheless this structure represents a very impres-
sive benchmark regarding particle size for SPR. One wonders
if it will be possible to obtain structures of even smaller,
hard-to-crystallize proteins such as G-protein-coupled recep-
tors having molecular weights on the order of 50 kDa. Are
there ways in which image SNR can be increased further, so
that orientation determination can be made more reliable?

Electron-counting cameras can be improved somewhat.
The Gatan K2 electron-counting camera used by Liao et al.
[6] and Bai et al. [36] has a detection quantum efficiency
that ranges from about 0.7 at low spatial frequencies to 0.4
at typical resolution limits [37]. Improvements bringing
these numbers toward unity will give proportional increases
in SNR.

The SNR of micrographs can be improved through the
use of minimal ice thickness and zero-loss energy filtration
of the image-forming electrons. The classical theory of
cryo-EM image formation makes the assumption that speci-
mens are very thin and only a minority of electrons undergo
scattering events. Unfortunately, inelastic scattering (which
happens at triple the rate of the desirable elastic-scattering
events) becomes substantial in specimens more than a few
tens of nanometers thick. Inelastic scattering has two dele-
terious effects. First, once an electron is inelastically scat-
tered, it cannot participate in the phase-contrast image
formation, and thus the image contrast is reduced. Second,
the inelastically scattered electrons contribute to the shot
noise in the recorded image. An energy filter is a device that
removes the inelastically scattered electrons before they
reach the camera, so that this second effect is eliminated,

giving an improvement in SNR. Indeed, energy-filtered
imaging was used for the gamma-secretase structure [36].

The SNR of acquired images is fundamentally limited by
electron dose, which in turn is constrained by radiation
damage to the specimen. Radiation damage is the breaking
of chemical bonds and the creation of molecular fragments,
some of which remain immobilized in the ice. Traditional
low-dose images are obtained at a dose of roughly 20 elec-
trons per square angstrom of specimen area to avoid the loss
of high-resolution information as damage occurs. One very
approximate way to model the effect of radiation damage
on particle images is a linear-filter model that assumes that
the high-resolution Fourier components are attenuated
whereas the low-resolution components remain largely
unchanged [38–40]. To the extent that this model is valid,
images can have their SNR improved by the appropriate
weighting of the frames acquired in movie-mode imaging.
Strong beam-induced movement during the first 1–2 e/Å2 of
exposure typically makes the first movie frames unusable
and these frames, unfortunately, are best discarded. High-
resolution information is preferentially obtained from the
remaining early frames of a movie, whereas low-resolution
information, so important for particle picking and orienta-
tion determination, is accumulated from entire movies with
total doses much higher than 20 e/Å2. Procedures of this
sort are already being used to improve image SNR, but
there may be room for improvement, based on a more
complete understanding of beam-induced movement and
radiation-damage effects.

Finally, it should be remembered that defocus-contrast is
a poor way to obtain phase-contrast images in the electron
microscope. A substantial gain in SNR is promised by
in-focus phase-plate imaging, for example through the use
of the Volta phase plate of Danev et al. [41]. In phase-plate
imaging, the oscillating CTF, having an average squared
magnitude of ½, is replaced with a constant contrast-transfer
close to unity magnitude; meanwhile, the shot noise level
remains the same. Technical problems remain, including the
knotty one of precise focusing of the microscope when a
phase plate is in use, but in principle a factor of two increase
in SNR is possible.

In summary, there is still room for considerable improve-
ment in cryo-EM technology. One can predict:

Future SNR improvement by a factor of 3–4 seems pos-

sible, making practical the structure determination of

some proteins below 50 kDa in size.

Contributing to these improvements will be advances in
specimen preparation, instrumentation and algorithms for
single-particle image processing.
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