Study Meeting 5: The grid & samples in ice

Zuben P. Brown & Prikshat Dadhwal

Three interrelated topics

- The specimen support
 Gold grids
 - Nanowire grids

Russo & Passmore (2016) J. Struc. Bio. 193:33-44

- The sample in ice
 Description
 - Air-water interface
- Noble *et al.* (2018) elife, 7:e34257
- Electron-specimen interactions (next time)

Zheng *et al.* (2017) Nat. Meth. 14(4):331

Specimen support

Grid materials			
Copper	Gold		
Nickel	CuRh		
Titanium	Molybdenum		
Silicon	Aluminum		
	Tungsten		

- "products are fully specified by 4 parameters"
- Hole diameter, pitch of the foil & material type & mesh type

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Specimen support

- "products are fully specified by 4 parameters"
- Hole diameter, pitch of the foil & material type & mesh type

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Specimen support

- "products are fully specified by 4 parameters"
- Hole diameter, pitch of the foil & material type & mesh type

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

C-flat

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Movement

Diffusion limit: "Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ~1.1 Å² for every incident 300 keV e/Å². … The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules" [McMullan, Vinothkumar, Henderson (2015) Ultramic. 158:26-32]

COLUMBIA UNIVERSITY

Different hole spacing

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Formulae for Figure 1

The mathematical formulae used to generate the plots in Figure 1, are tabulated below.

Description	Formula	Reference(s)	Notes
Electron wavelength	$\lambda = hc/\sqrt{2EE_0 + E^2}$	[27]	
Chromatic aberration limit	$d_c = \sqrt{\pi \Delta \lambda/2}$	[23]	
Inelastic mean free path	$\Lambda_i = C/\beta^2 \ln(\beta^2 (E + E_0)/E)$	[22]	†
Depth of field	$R = \sqrt{1.4/(t\lambda)}$	[26]	66° phase error‡

Different hole spacing

Different ratio of ice:foil

Russo & Passmore, (2016) Curr. Opin. Struc. Bio. 37:81-89

COLUMBIA UNIVERSITY

Question

- Does the grid influence movement?
 - Need to balance with protein concentration & behaviour etc
- Could we test this by looking at the MotionCor outputs and seeing movement for different grids?
 - Does anyone have any of these files they would be willing to share?

Three interrelated topics

- The specimen support
 Gold grids
 - Nanowire grids

Russo & Passmore (2016) J. Struc. Bio. 193:33-44

- The sample in ice
 Description
 - Air-water interface
- Noble *et al.* (2018) elife, 7:e34257
- Electron-specimen interactions (next time)

Zheng *et al.* (2017) Nat. Meth. 14(4):331

- Three general parameters:
 - 1. Air-water interface
 - 2. Bulk particle behaviour
 - 3. Ice thickness

- Three general parameters:
 - 1. Air-water interface
 - 2. Bulk particle behaviour
 - 3. Ice thickness

1) Clean		 Primary, secondary, tertiary protein structures/networks 	3) Surfactants (if present)
	water	from denaturation	
	air		

- Three general parameters:
 - 1. Air-water interface

2. Bulk particle behaviour

- 3. Ice thickness
- Free-floating particles (no preferred orientation)

 Particles at air-water interface (no preferred orientation)

 Particles at air-water interface, no denaturation (N-preferred orientations)

Particles at air-water interface, partial denaturation (M-preferred orientations)

W COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK 5) Particles at air-water interface, significant denaturation

ally the stand of a long the stand

- Three general parameters:
 - 1. Air-water interface
 - 2. Bulk particle behaviour
 - 3. Ice thickness
- 1) Convex

Concave (center is thicker than particle's minor axis)

Concave (center is thinner than particle's minor axis)

90% of proteins near AWI

3) Particles at air-water

ゆくともないである

significant denaturation

MANCE OB., OR WALL HA . OP.

interface, no denaturation

(N-preferred orientations)

A: Potential air-water interface composition

1) Clean

2) Primary, secondary, tertiary 3) Surfactants (if present) protein structures/networks from denaturation

and a first and a strength

B: Potential bulk particle behavior at/near an air-water interface*

1) Free-floating particles 2) Particles at air-water (no preferred orientation) interface (no preferred orientation) ම, මැංගු හි සුමු හි සින් 5) Particles at air-water interface.

4) Particles at air-water interface. partial denaturation (M-preferred orientations)

* Particles might also aggregate.

C: Potential ice thickness variations in holes[†]

Looked at over 1000 holes with tomography

90% of all particles are within 5-10nm of the air-water interface (we'll come back to this)

> Noble *et al.* (2018) elife, 7:e34257

† Apposed ice curvatures are not necessarily equivalent.

Ice thickness & protein spatial arrangement

Thinner ice in the centre, thicker at the edges Single layer of protein in thinner regions

COLUMBIA UNIVERSITY

Best supports for thin ice...

00

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Noble *et al.* (2018) elife, 7:e34257

> Razinkov *et al*.(2016) J. Struc. Bio. 195:190-198

Spatial arrangement is variable

COLUMBIA UNIVERSITY

CTF estimation & particle position

Noble *et al.* (2018) elife, 7:e34257

Table 3

Resolution Limit imposed by inaccuracy of defocus determination.

Res. (Å)	100 kV	200 kV	300 kV	400 kV
2.0	54 Å	80 Å	102 Å	122 Å
3.0	122 Å	179 Å	228 Å	274 Å
4.0	216 Å	319 Å	406 Å	488 Å
7.0	662 Å	976 Å	1244 Å	1494 Å

Zhang & Zhou (2011) J. Struc. Bio. 175:253-263

Summary

- Ice thickness changes with edge/centre
- Proteins double layer
- 90% at AWI
- Tomography would give us an absolute range for particle positon
- Could we generalize it and use it to provide positional information?
- (if we had limitless scope time) could we collect single particle & tomography?

Three interrelated topics

- The specimen support
 Gold grids
 - Nanowire grids

Russo & Passmore (2016) J. Struc. Bio. 193:33-44

- The sample in ice
 Description
 - Air-water interface
- Noble *et al.* (2018) elife, 7:e34257
- Electron-specimen interactions (next time)

Zheng *et al.* (2017) Nat. Meth. 14(4):331

Exposure to air-water interface (AWI)

Negative stain vs. cryoEM

Majority of FAS are damaged

Unsupported Ice

2D Classification

• 90% of particles damaged... where have we heard that before?

00

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

AWI & damaged particles

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

- Most particles are at the AWI (as Noble *et al.* showed)
- AWI also associated with damage of FAS

D'Imprima *et al.* (2018) BioRxiv, doi.org/10.1101/400432

Reconstruction of damaged particles

 Reconstruction shows particle damage associated with AWI

Is the AWI the cause?
Next slide

The AWI causes denaturation

IN THE CITY OF NEW YORK

Solution

- Graphene
 - Electron conducting
 - Stable
 - Hydrophobic

1-Pyrenecarboxylic acid

Sub-tomogram averaging (+/-) graphene

• Addition of graphene reduces denaturation

hydrophilized graphene +

hydrophilized graphene -

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Hydrophilized graphene changes spatial distribution

hydrophilized graphene +

Graphene contaminations

hydrophilized graphene -

Increased undamaged particles

hydrophilized graphene + hydrophilized graphene -3D Classification (no symmetry imposed, no damaged particles) ~ 49% ~ 30% ~ 21% ~ 90% damaged particles ~ 10% Class 3 Class 2 Class 2 Class 3 ~ 28000 particles ~ 8000 C D particles C Refined class 1 no symmetry imposed 9.5 Å resolution 280 Alpha wheel Refined class 1 Refined class 1 no symmetry imposed D3 symmetry imposed 4.8 Å resolution 4.0 Å resolution

60

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

D'Imprima et al. (2018) BioRxiv, doi.org/10.1101/400432

Beta

dome

Beta

dome

Increased noise, but better res.

В

Unsupported vitrified buffer

Refined class 1 (8000 particles) no symmetry imposed

9.5 Å resolution

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK Refined class 1 (8000 particles) no symmetry imposed

6.4 Å resolution

Functionalized graphene

Refined class 1 (28000 particles) no symmetry imposed

4.8 Å resolution

Exposure to air-water interface (AWI)

Exposure to air-water interface (AWI)

Graphene & 1-pyrCA

- Graphene (Graphena):
 - \$76
 - 10 mm x 10 mm
- 1-Pyrenecarboxylic acid (Sigma)
 \$71.50
 - 1 g
- Can we try this?
 - Oxidises quickly so need to make girds just prior to use
 - Higher noise

Summary

- Au-Au best grid (or nanowire grid)
 - Does hole spacing have any effect?
 - Can anyone share with me some MC2 log files & grid type

- Most proteins (90%) are at the AWI
- Majority of proteins damaged by this?
 - At least FAS is (90%)
- Can we use graphene & 1-pyrCA to improve stability & get some nice structures?

Group meeting

More than 90 days?

Table	1. Next semi	inar order			Paper	Conf.		
Rank	Name	Days	90days	Seminar	discussion	report	Other	Total
1	Hstau	536	2017/7/19	1	0	0	0	1
2	Jack	117	2018/9/11	2	0	1	0	3
3	Suvrajit	117	2018/9/11	2	0	1	0	3
4	Sergey	61	2018/11/6	2	0	0	0	2
5	Fransisco	47	2018/11/20	2	1	1	0	4
6	Evan	40	2018/11/27	2	0	0	0	2
7	Prikshat	33	2018/12/4	0	1	0	0	1
8	Zuben	26	2018/12/11	1	0	1	0	2
9	Clara	19	2018/12/18	2	1	0	1	4
10	Sonya	12	2018/12/25	2	0	1	0	3
11	Hengameh	5	2019/1/1	3	0	0	0	3
12	Sandip	-2	2019/1/8	2	0	0	1	3
13	Cristina	-9	2019/1/15	3	0	0	0	3

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

B: Average ice and particle properties ~100 nm from the edges of holes

00

IN THE CITY OF NEW YORK

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Tomography & SPA (fig. 8)

A: Gaussian particle picking

00

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

B: CryoET SPT produces de novo templates for picking and alignment

FAS production

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Tomography slices

Fig. 3

Doping with graphene: Fig. 5

Quantifoil R0.6/1 hole

Diffraction patterns

Specimen before doping

Specimen after doping

Fig. 6

COLUMBIA UNIVERSITY

Fig. 6 sup. 2

Fig. 7

Fig. 8 sup. 3

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK