
Progress towards an optimal specimen support for
electron cryomicroscopy
Christopher J Russo and Lori A Passmore

Available online at www.sciencedirect.com

ScienceDirect
The physical principles of electron–specimen interaction

govern the design of specimen supports for electron

cryomicroscopy (cryo-EM). Supports are constructed to

suspend biological samples within the vacuum of the electron

microscope in a way that maximises image contrast. Although

the problem of specimen motion during imaging has been

known since cryo-EM was first developed, the role of the

support in this movement has only been recently identified.

Here we review the key technological advances in specimen

supports for cryo-EM. This includes the use of graphene as a

surface for the adsorption of proteins and the design of an

ultrastable, all-gold substrate that reduces the motion of

molecules during electron irradiation. We discuss the

implications of these and other recent improvements in specimen

supports on resolution, and place them in the context of

important developments in structure determination by cryo-EM.
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Introduction
After important studies of the damage caused by high-

energy electrons to biological specimens [1,2] and devel-

opment of methods to compute 3D density maps from 2D

projection images [3–5], the key technological advance

that underpins the field of cryo-EM is the vitrification of

water [6��]. Vitrification rapidly freezes proteins in thin

layers of water ice, thus preserving their structures in a

native environment for imaging. The device most often

used to support thin layers of ice comprises an amorphous

carbon foil suspended across a metal mesh grid [6��]. The

carbon foil is perforated with holes of order one microm-

eter in diameter. Biological specimens suspended across

the holes are frozen such that the water surrounding them
www.sciencedirect.com 
enters an amorphous solid phase, nearly identical to

motionless liquid water, which preserves the arrangement

of the molecules as they were just before freezing [7��].

When irradiated with the electron beam, vitrified biolog-

ical specimens move and build up semi-static charge long

before they are destroyed by the high energy electrons;

this blurs the micrographs and limits their resolution.

Although this movement has been known since the early

days of cryo-EM and many previous studies contributed

to understanding its origin [8��,9–14,15�], it was only with

the recent advent of direct electron detectors that we

have been able to quantify specimen movement with

sufficient accuracy to begin to delineate the physical basis

of radiation-induced movement [16�,17�,18,19,20�]. This

has revealed that much of the movement is due to the

support itself [21��]. In this review, we discuss the physi-

cal requirements of cryo-EM specimens and consider how

supports have improved since Dubochet and colleagues

first demonstrated vitrification. This technological prog-

ress has, and will continue to facilitate faster and easier

data collection and higher resolution images.

Physical requirements of cryo-EM specimens
The interactions of high-energy electrons with solid

materials govern specimen design for transmission elec-

tron microscopy (EM). The theory of electron specimen

interaction [29] was established long before the technol-

ogy to prepare native biological specimens was developed

[7��]. Since phase contrast is the imaging mechanism that

provides the most information from the sample [24��,30],

specimens for single particle cryo-EM must be designed

to maximise this form of contrast. Specimen design

centres on minimising the deleterious effects of inelastic

and multiple scattering, which do not contribute to phase

contrast and cause damage to the specimen (inelastic),

while preserving the elastic and unscattered electrons for

the generation of phase contrast (Figure 1). Specimens

must be thin because electrons cannot traverse materials

that are much thicker than the mean free path of the

electron in ice, and the thicker the specimen, the more

inelastic and multiple scattering effects will degrade

image quality. As shown in Figure 1, the mean free path

of electrons in water ice is a few tenths of a micrometer,

and increases with energy; it saturates at around 1 MeV

due to relativistic effects as the electron approaches the

speed of light. Specimen thickness is also limited by

the depth of field in the image, which increases with

energy (Figure 1). For single-particle EM and electron

cryotomography, this limits specimen thickness to less
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Figure 1
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Physical constraints on specimen design in cryo-EM. Diagram (a) of high-energy electron scattering in a thin layer of ice, with types of events

shown in order of decreasing probability from left to right. Only the unscattered and single elastic scattering events (bold) contribute to typical

phase contrast imaging; the remainder damage the specimen (inelastic) or contribute noise to the image. The relative probability of these events is

described by their scattering cross sections, whose sum is closely related to the total mean free path, shown in (b). Several other physical

parameters that constrain specimen design in cryo-EM are plotted versus energy in (b). Unlike for light microscopy, neither the electron

wavelength (light green line) nor the lens optics (pink line, chromatic aberration) limit resolution. Instead, specimen movement during imaging

(black dashed line, information limit for moving particles without motion correction on Quantifoil supports) and information content in the individual

images limits practical resolution. High-speed detectors can be used to compensate for specimen motion (to move below black dashed line) and

new supports reduce movement (gold dashed line, information limit on all-gold grids). Cryo-EM is now starting to approach the information limits

imposed by the optics of the microscope (pink line) and the diffusion of the particles within the vitrified ice (purple dashed line, 1 MDa particles).

The thickness of the specimen is limited by the total mean free path in ice (blue dashed line), and the depth of field (DOF) at a particular resolution

caused by curvature of the Ewald sphere. Theory after [21��,22,23,24��,25–28]; see Appendix A.
than a micrometer, and for high-resolution even thinner:

about 300 Å thick for 2 Å resolution at 300 keV.

Specimens must also be thin for vitrification: water must be

cooled to cryogenic temperatures in less than a millisecond

to stop the molecules from forming crystals [7��]. At

atmospheric pressure this requires a thin layer of liquid

that is less than about three micrometers thick. Any

thicker, and the thermal conductivity of the water itself

will prevent the water from cooling fast enough to enter the

amorphous phase. The instability of thin aqueous layers

still presents challenges to reliable sample preparation [31].
Current Opinion in Structural Biology 2016, 37:81–89 
Since the specimen is damaged by inelastically scattered

electrons at a rate that is faster than it is imaged by the

elastically scattered ones [24��], it was essential to devel-

op low-dose techniques and supports that minimise irra-

diation of the specimen. Unfortunately, while low-dose

imaging circumvents the fundamental limit of damage to

the specimen, it comes at a price: (a) the images become

noisy because there are not enough electrons in the image

to resolve high resolution features (�1000 e�/Å2 are re-

quired for atomic resolution but �10 e�/Å2 destroy the

specimen) and (b) when a specimen is first irradiated, it

moves (4 Å or more in the first �10 e�/Å2 according to our
www.sciencedirect.com
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measurements [20�]), which blurs the images and reduces

the resolution.

To overcome limitation (a), many images of identical

molecules are taken, which are then aligned with each

other and averaged, effectively increasing the dose without

increasing the damage [3]. But this technique cannot

overcome limitation (b) as the high-resolution information

is lost in the movement of the particles. More specifically,

the maximum resolution for which information is transmit-

ted from a moving specimen to the image is

dm ¼
pr
ffiffiffiffiffiffiffiffiffi
6lnS
p (1)

In this formula, dm is the resolution limit of an image where

the particles within it have moved in random directions,

but on average by a distance r [23]. S is the signal to noise

ratio required to distinguish a particular feature in the

image. Here we make the simplifying assumption that

the particle velocity can be approximated as being constant

during image acquisition. For a signal to noise ratio of

ln S = 2 and using previous measurements of average par-

ticle movement r [20�,21��], we use Equation (1) to calcu-

late the resolution limits plotted in Figure 1b (dashed

lines). Compared to other limits on resolution, it is clear

that movement is more limiting than either the wavelength

of the electron or the optics of the microscope. This

illustrates another important improvement in cryo-EM

due to the development of direct-electron detectors. By

splitting the micrographs in time into movies, tracking the

movement of the particles and then compensating for the

movement using image correction algorithms, the effective

particle movement, r, can be reduced [17�,18,19,32]. This

lowers the resolution limit, dm, imposed by that movement

and accounts for the improved resolution with direct

electron detectors versus film which cannot be explained

by increased detector efficiency alone.

The buildup of charge on the specimen can induce

physical movement of the molecules relative to the

microscope, but it can also cause a virtual movement of

the particle images by deflecting the image forming

electrons [15�,33�]. This imposes an information limit

on the images that is equivalent to the one described

above; only now it is the apparent movement in the

specimen or variation in defocus across the field of view

that blurs the image. More accurate measurements of

charging effects are required to quantify this form of

blurring, and thus delineate how the electrical properties

of the specimen and its support structure limit resolution.

Supports
Geometry

To satisfy the physical constraints discussed above, sup-

port designs for biological cryo-EM have converged on a

geometry that comprises a perforated foil suspended

across a 3 mm grid (Figure 2). Macromolecules in vitrified
www.sciencedirect.com 
aqueous solution are suspended across the holes. This use

of perforated (not continuous) foils means that samples

can be imaged without additional background signal from

the support material. This geometry also allows focusing

and other parameters to be set using an adjacent area of

the support foil. Perforated foils can have holes with a

random size distribution, in an irregular arrangement

(holey or lacey grids) [34–36]. More recently, foils with

regular arrays of holes of controlled size have been made

using micro-fabrication techniques (e.g. Quantifoils1 or

C-flatsTM [37�,38–40]), allowing more reproducible spec-

imen preparation and imaging, and facilitating easier low-

dose data collection.

Support development

Some of the first supports used for biological electron

microscopy were a mesh made of copper wire [41] or a disc

of metal foil with a pinhole [42,43]. Smaller specimens

were supported by adding thin layers of nitrocellulose

(collodion) or plastic (e.g. formvar) to the grid [44], but

these foils had poor stability and conductivity. Soon, the

plastics were replaced by amorphous carbon [45] which

was more stable and electrically conductive. Other tech-

niques were developed to manufacture perforated plastic

films [34], and coat them with carbon or metal to improve

their stability [35].

Since the development of vitrification methods [6��], metal

grids with perforated amorphous carbon foils have been the

support of choice. The most popular grid material has

historically been copper, but any metal that can be used

for electrodeposition can be made into a grid (Figure 2a).

Grids are specified by the pitch of the mesh, usually in the

unfortunate but ubiquitous imperial units of lines per inch.

Grids of 200–400 lines per inch have squares that are 130–
60 mm across, and offer a compromise between stability

and imaging area. Carbon is relatively electron transparent

(due to its low scattering cross-section) and it is straight-

forward to manufacture it into perforated foils. Neverthe-

less, amorphous carbon has limitations. Supports with a

copper or gold grid and perforated amorphous carbon foil

move during electron irradiation by 200–400 Å perpendic-

ular to the plane of the support [21��]. One reason for this is

a lack of tension in the carbon foil after cooling. Owing to

differing thermal expansion, carbon shrinks less than the

most common metals (copper, gold) used for the grid. This

leads to ‘cryo-crinkling’ of the carbon [46–48], which adds a

compressive force on the foil and resulting in increased

specimen movement [49]. By making the thermal expan-

sion coefficient of the grid less than that of the foil (e.g.

molybdenum or tungsten versus carbon), one can minimise

crinkling [47,50,51]. Still, the physical properties of amor-

phous carbon are variable (expansion coefficients can vary

by a factor of four [52]) so controlling the coefficient

mismatch remains challenging. Simply increasing the

thickness of the carbon foil reduces radiation-induced

motion [48,49] but carbon has other disadvantages. It is
Current Opinion in Structural Biology 2016, 37:81–89
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Figure 2
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Design of cryo-EM specimen supports. Top view and section diagrams of typical specimen support geometries, comprising a perforated foil on a

metal mesh grid. Sometimes an additional thin continuous film is added to the foil to change its surface properties. Three different magnifications

are shown (a)–(c) along with lists of materials used for each component of the support. The most commonly used materials are in bold.
a semiconductor [49,53] and has poor conductivity com-

pared to most metals, which may contribute to charging of

the specimen. Also, physical and chemical changes occur in

carbon foils upon electron irradiation [49,54].

Several alternative foil materials have been used instead of

amorphous carbon. Some improvement was observed by

coating a carbon foil with gold or titanium-silicon [55]. Pure

amorphous titanium-silicon foils have increased conduc-

tivity and mechanical strength compared to amorphous

carbon [14,56]. This improves images of 2D-crystals, but

their use for single-particle structure determination has not

been demonstrated. Doped silicon carbide foils on a silicon

frame (CryomeshTM) are flatter and more rigid but are also

fragile and difficult to use in practice [57].

We recently showed that manufacturing the grid and the

foil out of a single material, gold, overcomes many of

these limitations [21��]. First, there is no mismatch in

thermal expansion so the grid and foil shrink uniformly

upon cooling, eliminating any additional compressive

stress on the foil. Second, gold is highly conductive (more

conductive than TiSi and SiC films), even at liquid

nitrogen temperatures [49]. Third, the secondary electron

yield of gold is high and this may help neutralise accu-

mulated charge in the ice that distorts images. These

supports reduce movement (Figure 3) and improve the
Current Opinion in Structural Biology 2016, 37:81–89 
resolution of electron cryomicrographs and cryotomo-

grams [21��,58].

All-gold supports can be used with the same methods as

standard Quantifoil supports, are simple to produce in the

laboratory and are also commercially available (UltrAu-

Foil1).

Protein interactions with surfaces

The physical constraints for EM supports require that

macromolecules are embedded in a thin layer, so they are

necessarily in close proximity to two surfaces. This con-

figuration is problematic since proteins can interact

strongly, and in complicated ways, with these surfaces

[59]. Surface interactions are important in cryo-EM spec-

imen preparation because the surface area to volume ratio

of the suspended water is large. The ratio of a 1 mm hole

filled with 100 Å thick ice is five orders of magnitude

greater than that of a 1 mL spherical drop of water. It is

therefore not surprising that proteins often denature

during specimen preparation. Proteins can be attracted

to the support foil and excluded from the thin layer of

suspended water. Any surface, including the air–water

interface, can induce preferential orientation of mole-

cules and this will be different for every specimen. All

of these factors can limit structure determination in

practice.
www.sciencedirect.com
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Figure 3
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Reducing movement of biological specimens to the physical limits. Electron radiation induced movement of ribosomes was measured on different

supports under the same irradiation conditions (a)–(d). Ribosomes imaged on amorphous carbon (am-C) supports (a,b) show a large degree of

movement during irradiation. Replacing the thin amorphous carbon film (a) with graphene (c) reduces the movement and improves reproducibility.

Making the entire support from gold reduces the movement to less than 2 Å in a typical micrograph, (d). Further developments are required to

reduce the radiation induced movement to the theoretical limit set by pseudo-diffusion of the particles in the ice (e). Panels (a–d) reproduced from

[20�,21��], panel (e) calculated with the Stokes-Einstein equation using the water diffusion coefficient measured in [28]. Values for these curves at

15 e�/Å2 are used to calculate the information limits in Figure 1.
Most support surfaces are hydrophobic and are made

more hydrophilic by surface modification techniques to

improve their wettability. This is typically achieved by

exposing the support surface to a low-energy plasma

which is created by the ionisation of a low-pressure gas

[60,61]. Ions from the plasma interact with the surfaces to

remove contamination and render them hydrophilic. This

can be done using residual air (glow discharging) or under

more controlled and defined conditions (e.g. oxygen,

argon, hydrogen) [20�,39]. Other molecules (e.g. amyla-

mine [54,60]) can be introduced during treatment to alter

the surface properties, changing how proteins interact

with them. Surfactants (e.g. detergents or phospholipids)

[7��] or regular arrays of small proteins [62] can also be

used to change water interfaces and to modify their

interaction with proteins. Surfactants may improve the

stability of thin water layers and allow more control of ice

thickness [31]. Still, the specific effect of a particular

surfactant is difficult to predict and therefore requires

trial and error or systematic screening.

A thin continuous film of amorphous carbon can be placed

over the perforated foil (Figure 2c) to control one of the

two surfaces and improve particle distribution and orien-

tation. Since particles adsorb to the carbon, lower solution

concentrations can sometimes be used. In addition to the

problems described above, imaging molecules over amor-

phous carbon adds a significant amount of background

noise. To address these shortcomings, several alternative

support films have been proposed, including titanium-

silicon, carbon nanomembranes and other forms of nano-

scale carbon [14,63,64].

Interestingly, single crystals of atomically thin graphite

were proposed as superior support films for electron
www.sciencedirect.com 
microscopy more than fifty years ago [65–67]. With the

discovery of graphene [68], and the development of

methods for its large-scale chemical synthesis [69], this

idea has been revisited in the context of cryo-EM.

Graphene has a higher conductivity and mechanical

strength, and lower electron scattering cross-section

than any other atomically thin film, making it theoreti-

cally ideal as a support film. Methods for the transfer of

chemically synthesised graphene onto EM supports

were first developed for non-biological specimens

[70]. Still, pristine graphene is hydrophobic and needs

to be modified for use with aqueous biological speci-

mens. A fully oxidised form of graphene, graphene

oxide, demonstrated  the feasibility of using graphene

derivatives for cryo-EM [71�]. Subsequent measure-

ments showed that pristine graphene contributes no

background signal at all, in the spatial frequencies of

interest to structural biology [20�,72�]. This is in con-

trast to the significant background signal from graphene

oxide and thin layers of amorphous carbon [72�]. Sev-

eral other graphene modifications have been used to

render it more hydrophilic. These include application

of protein solution to the bottom side of a graphene-

covered support, evaporation of amorphous carbon on

the graphene, and glow-discharging [73,74].

Partial hydrogenation increases the hydrophilicity of

monolayer graphene without damaging the graphene

lattice and without increasing background signal [20�].
To achieve controlled, partial hydrogenation, graphene is

treated with a low-energy hydrogen plasma. This

removes contamination that contributes to background

signal and, importantly, the amount of hydrogenation can

be used to tune protein density on the film. Imaging

of ribosomes demonstrated that radiation-induced motion
Current Opinion in Structural Biology 2016, 37:81–89
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Description Formula Reference(s) Notes

Electron

wavelength
l ¼ hc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EE0 þ E2

p
[27]

Chromatic

aberration

limit

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDl=2

p
[23]

Inelastic mean

free path
Li ¼ C=b2lnðb2ðE þ E0Þ=EÞ̄ [22] y

Depth of field R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4=ðtlÞ

p
[26] 668 phase

errorz
of particles is reduced on graphene (Figure 3c) and high

resolution 3D structures can be obtained [20�].

Future perspectives and conclusions
More reproducible support manufacturing and robotic

control of humidity, temperature and blotting during

plunge freezing have simplified the process of generating

vitreous ice [75]. Still, there is much trial-and-error during

specimen preparation and often the microscopist screens

many grids before finding one with suitable ice thickness,

appropriate protein distribution within the holes, and

sufficiently random particle orientation. Automation is

one approach to improving specimen preparation, for

example, using inkjet deposition [76,77]. This includes

the development of time-resolved methods that can trap

specific and non-equilibrium molecular states [78–80].

Tailoring the surfaces of the support and development of

screening tools could allow rapid and reproducible testing

of conditions to facilitate structure determination of any

protein. To achieve this, new surface treatments, functio-

nalisation of continuous films, and self-assembled mono-

layers may allow control of surface–protein interactions and

the stability/thickness of thin water layers [31,81–83].

When a continuous film is required to tune particle distri-

bution and orientation, partially hydrogenated graphene is

currently the best choice, particularly for smaller molecules

where it is important to minimise background noise. Fu-

ture work in the authors’ labs will focus on tuning graphene

to allow better control of protein orientation and to com-

bine it with all-gold supports.

Ideally, the support will ensure that the specimen moves

much less than the resolution of the microscope used to

image it, inhibit the buildup of charge that may distort

images, and afford control over the position, orientation

and distribution of the specimen in the field of view. All-

gold supports improve upon previous technology by sub-

stantially reducing radiation-induced motion, but further

development is needed to reduce this movement to the

theoretical limits (Figure 3e) and achieve an ideal support

structure. To reach this goal, support materials, surfaces

and geometry will need improvement in conjunction with

new methods for specimen preparation. The optimum

specimen support will maximise the high-resolution infor-

mation content available in each image and enable atomic

resolution structure determination with a few thousand

particles from a handful of micrographs.
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Formulae for Figure 1
The mathematical formulae used to generate the plots in

Figure 1, are tabulated below.
E is the electron energy, E0 is the electron rest energy

(511 keV), t is the specimen thickness, h is Planck’s

constant, b is the ratio of the electron speed to the speed

of light, C is the empirical constant determined from the

fit and Ē is the mean energy loss, assumed to be 20 eV.

y—Theoretical formula for mean free path was fit to best

available experimental measurements of the inelastic

mean free path in amorphous water ice, 2030 W 330 Å

[25]. Using the inelastic value will slightly underestimate

the total mean free path but since the elastic and inelastic

cross sections scale together in the energy range of

interest and given the error in the measurement, it is

reasonable for the purposes of this discussion.

z—Several definitions of depth of field are discussed in the

literature for high resolution phase contrast, all of which

rely on somewhat arbitrary criteria for defining the depth

limits. Most use the weak phase approximation, which has

questionable validity in predicting resolution limitations

due to specimen thickness but has proved useful in de-

scribing high resolution phase contrast [for a discussion see

Ref. 84]. With this in mind, we took the depth of field due

to curvature of the Ewald sphere described by DeRosier

[26], as a reasonable, if perhaps somewhat optimistic,

estimate of depth of field for the purposes of this review.
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