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In this paper the factors affecting the information limit of transmission electron microscopes are described in a general 
framework. Separate information limits are given for the influence of chromatic aberration and beam convergence, for 
specimen drift and vibration and for the detection of the image with a limited number of resolved pixels. Their relative 
importance is discussed and constraints are derived relating all ffictors to the information limit as given by the chromatic 
aberration. By taking into account the brightness of the source and the noise explicitly, it has been possible to find optima 
for the exposure time and the convergence angle of the illumination, yielding the best information limit which can be 
achieved with a given microscope. The higher brightness of a field-emission gun improves the information limit because a 
smaller angle of beam convergence can be used, but also because the signal-to-noise ratio is improved. 

1. Introduction 

In part  1 of our paper  [1] we have described 
some general ideas about resolution in electron 
microscopy. In the framework of information the- 
ory, the electron microscope can be considered as 
an information channel which transmits informa- 
tion from the object to the user. The quality of 
the channel is then given by its capability to 
transfer information with a high bandwidth. In 
transmission electron microscopy (TEM), the 
maximum spatial frequency Gma x which is trans- 
mitted with sufficient intensity is usually referred 
to as the inverse of the information limit Pi. The 
information limit is determined by several inco- 
herent effects such as limited spatial and tempo- 
ral coherence of the electron beam and mechani- 
cal instabilities. It signifies the smallest detail for 
which information can be retrieved by some more 
or less advanced restoration procedure. The reso- 
lution number  which is most often quoted for 
TEMs is the point resolution Ps. This resolution 
represents the smallest detail which can be di- 

rectly in terpre ted  under  special conditions 
(Scherzer focus and a weak phase object). The 
point resolution is only related to the spherical 
aberration coefficient C~ and the wavelength A of 
the microscope and is given by p~ = 0.65(C~A3) °25 
(see, e.g., Spence [2]). The microscope transfers 
information beyond the point resolution, but the 
interpretation is not straightforward because of 
the rapid oscillations of the transfer function of 
the microscope. The information in the resolu- 
tion range between point resolution and informa- 
tion limit may be retrieved by image reconstruc- 
tion procedures such as off-axis holography and 
focal-series restoration [3,4]. These procedures 
now become feasible because of the availability of 
high-resolution microscopes equipped with a 
field-emission gun (FEG) and a slow-scan CCD 
camera. Thus the relation between information 
limit and various microscope parameters  becomes 
an important issue. 

To obtain the best resolution it is important to 
balance the various resolution-limiting factors. In 
this paper  we will use one general but simple 

0304-3991/93/$06.0(1 ¢3 1993 Elsevier Science Publishers B.V. All rights reserved 



A.F. de Jong, D. Van Dyck / Ultimate resolution and information in electron microscopy. H 67 

framework to describe the most important factors 
affecting the information limit. To consider the 
imaging properties of the microscope indepen- 
dently of the specimen, we will adopt the weak 
phase-object approximation (WPO) for the elec- 
tron scattering in the object. If  dynamical scatter- 
ing becomes important and non-linear effects 
have to be included into the imaging process, it 
becomes much more difficult to define an infor- 
mation limit independently of the object. The 
WPO approximation is only appropriate for very 
thin objects, which may seem a severe limitation. 
Still, in the case of phase retrieval using hologra- 
phy the theory developed here is exact, when 
applied to the information limit in the recon- 
structed wave function. In the case of focus-series 
image reconstruction, the same is true within the 
limits of a quasi-coherent imaging scheme [2]. 

An overview of all the factors affecting the 
resolution of the TEM has been given by Glaeser 
in 1979 [5]. Here,  we will include not only the 
effects of limited spatial and temporal  coherence 
of the electron beam, but also mechanical insta- 
bilities such as specimen drift and vibration, and 
the limited size of the detector. It is important 
that all factors are described properly, with one 
set of consistent equations. In section 2 all factors 
limiting the bandwidth of the microscope are 
described and an information limit is derived for 
each factor separately. In section 3 the relative 
importance of all factors is discussed. This leads 
to a set of simple rules that relate the relevant 
envelope parameters  to the desired information 
limit. In section 4 the influence of noise is taken 
into account explicitly. By considering the mini- 
mum dose needed to obtain a certain resolution 
(Rose limit [6]), estimates may be given for the 
actual signal-to-noise ratio and information limit 
that may be reached. Relations are derived for 
the opt imum exposure time and convergence an- 
gle of the illuminating electron beam, for a given 
set of microscope parameters.  

2. Image formation and envelope functions 

When the object can be described as a weak 
phase object, the image intensity can be written 

in the linear approximation as [2]: 

I(R)=FT l { I (G)} ,  (1) 

I(G) = 3(G) - 2~rV(G)E(G) s in[Z~-x(G)] ,  

(2) 

where R and G are two-dimensional vectors in 
real and reciprocal space, respectively. I(G) is 
the complex image spectrum, V(G) the Fourier 
transform of the potential of the object and o- the 
interaction constant. The transfer function of the 
microscope consists of a damping function E(G) 
and a phase part  x(G), which are both even 
functions of G in the absence of astigmatism and 
misalignment. The phase part of the transfer 
function has the form 

, , v ( G  ) = I c )L3t,~4 1 2 ~ s "  ~ + 5 AeG , (3) 

with C~ the spherical aberration constant, e the 
focus (underfocus is negative) and h the electron 
wavelength. 

We will consider five different effects that 
attenuate the amplitude of the transfer function 
E(G). They have in common that they model 
small variances in the image contrast which are 
added incoherently. In general, they affect the 
higher spatial frequencies more severely than the 
lower frequencies, resulting in a cut-off frequency 
Gma x where the power spectrum of the image 
drops below the noise level. The information 
resolution p~ of the microscope, which is the 
inverse of the cut-off frequency, is defined as the 
point where the product of the signal S (more 
accurately the contrast) and the envelope E drops 
below the noise N. If we denote the signal-to- 
noise ratio S / N  as s, we have E(1/pi)= 1/s. 
The product of the five separate envelope func- 
tions to be described hereafter  has to remain 
above 1/s:  

E( G) = F c( G) G)E ( G)ED( G) Eu( G) 

> 1/s. (4) 

We will first describe all envelope functions and 
derive information limits (cut-off frequencies) for 
all effects separately. In te next section, their 
interrelationship will be discussed. Here  s is 
treated as a constant, its dependence on other 
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parameters such as integrated electron dose and 
specimen contrast is considered in section 4. 

2.1. Chromatic aberration envelope function Ec(G) 

The envelope function for the chromatic aber- 
ration reads [2,7]: 

E:(G) = e x p [ -  ½(~r,:lA)2G4], (5) 

with the defocus spread A given by: 

(6) 

where C c is the chromatic aberration. AV/V and 
A I / I  are the instabilities of the high-voltage sup- 
ply and the objective-lens current, respectively, 
while A E / V  is the intrinsic energy spread of the 
electron gun, all defined here as the standard (or 
root-mean-square) deviations [2]. 

Neglecting the other envelope functions in eq. 
(4), we obtain an information limit only due to 
the chromatic aberration: 

,WAA ) 1/2 

Pc= 2 lv~T~7 (7) 

If we take e -2 as the cut-off value, i.e. In s = 2, 
we obtain the information limit usually quoted: 

Pc = f ~ a / 2 .  

2.2. Source-dependent envelope function Es(G) 

In this paper we will consider a Gaussian- 
shaped source, which means that the probe on 
the specimen is slightly defocused. This distribu- 
tion then leads to an envelope function [2,8]: 

=ex  - { T ) (  (s) 

where a is the half-angle of the distribution, 
defined as the value where it reduces to l / e  of 
its value at the origin. Under appropriate condi- 
tions, this value may be measured from densito- 
meter traces through diffraction spots of a known 
specimen. Note, however, that this treatment of 
the effects of beam convergence or spatial coher- 
ence assumes that the illuminating aperture is 
incoherently filled, which is not always the case 
for FEG microscopes. In that case, the measured 
angular width of the source distribution underes- 
timates the degree of spatial coherence. 

Clearly, this envelope function is focus-depen- 
dent. For negative focus values (underfocus), the 
C~ term is partly compensated by the focus term, 
extending the value of G . . . .  . The focus can al- 
ways be adapted in such a way that the expres- 
sion between brackets in eq. (8) is zero for G = 
G,d X (e.g. for testing the information limit). How- 
ever, when a is too large (roughly above 1 mrad), 
much of the contrast in the intermediate frequen- 
cies is lost, which would limit practical mi- 
croscopy. In fig. 1 several source-dependent en- 
velopes are given as a function of defocus, illus- 
trating this effect. To extend the information 
limit to 0.1 nm a half-angle of around 0.1 mrad is 
probably necessary, which can be obtained using 
a FEG. 

However, we can find a focus value where the 
envelope function is maximum for the whole range 
of spatial frequencies involved, which means that 
we have to minimize the argument of the expo- 
nential in eq. (8). If we choose the range of 
frequencies involved as 0 < G < G ...... we obtain 
the "optimum" focus: 

3 QA 2 
_ ~ ¢  ~ 2 ¢ z  _ ( 9 )  Gopt 4 ~s  "* Vmax 4 o~ 

This focus value, much further under focus than 
Scherzer focus, is the same focus which mini- 
mizes the effect of delocalization, as reported by 
Lichte [9], and which will also be used in the next 
section. As illustrated in fig. 1, at the optimum 
focus the "dip" in the envelope function at the 
intermediate frequency G . . . .  / 2  reaches exactly 
the same value as the value at G ..... . Close to the 
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Fig. 1. Envelope function Es(G) due to a finite angle of beam 
convergence. The envelope is given for two half-angles of 
beam convergence: (a) a = 0.7 mrad (appropriate for a LaB~, 
gun) and (b) a = 0.1 mrad (appropriate for a FEG), each with 
three values of defocus: Scherzer focus, the "optimum" focus 
for image reconstruction (for Pi = 0.15 and 0.1 nm, respec- 
tively) and the focus which ensures that the source envelope 
at the information limit is unity. The accelerating voltage 
chosen was 300 kV, C~ = 1.2 ram. Arrows indicate that at the 
optimum focus the envelope function at Gma x / 2  has the same 

height as at Gma x. 

maximum spatial frequency, we may thus write 
the source envelope function as 

E s ( a )  = e x p [ - ( ~ - ) 2 a 2 ( C s ~ 3 a 3 ) 2 ] ,  ( 1 0 )  

where a varies from 0.25 for the opt imum focus 
given in eq. (9) to 1 for the case of Gaussian 
focus. The information limit due to the limited 
coherence of the source only is obtained as: 

6rraa 1/3 
p = t~ps  )4 ( 1 1 )  

Via this equation, the information limit is influ- 
enced by the point resolution p, of the micro- 
scope in the case when the limited spatial coher- 
ence of the source is really a resolution-limiting 
factor. Furthermore,  p~ is proportional to a l/~, 
which means that in passing from Gaussian focus 
to the opt imum focus, the information limit is 
improved by about 40%. 

2.3. Sample drift envelope function EJG) 

To describe the effect of sample movement  on 
the resolution, we will follow Frank [10]. The 
image intensity is dependent  on time and the 
recorded image is the time integral of the moving 
image, which leads to damping envelopes in re- 
ciprocal space in a similar way as for focus spread 
(section 2.1). For the case of a linear sample drift 
v with a total drift d = Vtexp, we find for the drift 
envelope function: 

Ed(G)  = s i n c ( r r G ' d )  --- e x p [ -  ~(TrG" d)e] .  

(12) 

Ed(G) diminishes appreciably even for small val- 
ues of G in directions parallel to the drift vector, 
as illustrated in fig. 2a. For values of the drift 
which are reasonably small compared with the 
desired information limit, the sinc function may 
be approximated by a Gaussian, which is correct 
up to third order in Gd. From this equation, the 
information limit due to sample drift may be 
derived: 

~-d 
- ( 1 3 )  

Pd V/6 In s 

2.4. Specimen vibration envelope function Eu(G) 

For the calculation of the specimen vibration 
envelope function a vibration of the specimen is 
assumed with frequencies which are large com- 
pared with the inverse exposure time (typically 
above I Hz). When the vibration has an ampli- 
tude u (i.e. a mean-square deviation of u2/2),  the 
vibration envelope is [10]: 

Eu(G ) = J o ( 2 r r G ' u ) = e x p [ - ( T r G - u ) 2 ] .  (14) 
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Fig. 2. (a) Envelope function Ea(G) due to sample drift (in 
the direction of the drift), for three drift values and (b) Eu(G) 
due to sample vibration (in the direction of the vibration), for 

three vibration amplitudes. 

Here  Jo(x) is a Bessel function of zero order, 
which for small vibration amplitudes may be ap- 
proximated by a Gaussian [11]. This envelope also 
already attenuates the contrast for rather small 
frequencies (fig. 2b). The information limit due to 
specimen vibration is then given as: 

~ U  
- ( 1 5 )  

Pu K S  

Compared with the information limit due to spec- 
imen drift, the tolerances on the sample vibration 
are much more severe. This stems basically from 
the definition of the vibration amplitude: in one 
cycle, the specimen "drifts" over a distance twice 
the amplitude. 

2.5. Detector enwelope function ED(G) 

The limited number of resolved image points 
available for detection has up to now not been 
described as an incoherent damping envelope 
function affecting the information limit. This be- 
comes necessary when using slow-scan CCD cam- 
eras with e.g. 10002 pixels, which is needed when 
further phase retrieval is aimed at. In this section, 
an envelope function accounting for this effect 
will be derived. The envelope function is the 
result of two conflicting effects: delocalization of 
the information in the imaging process, and a 
finite pixel size. 

The image area which is actually captured may 
be defined by the circular window function 

w ( R )  = 1 f o r l R I  < R  w, 
(16) 

w ( R )  = 0 elsewhere. 

The detected part  of the image is the original 
image multiplied by w(R), which yields for the 
image spectrum / , (e ) :  

I~(e)  = fz(G')W(e - e ' )  d e ' ,  (17) 

with l ( e )  as given by eq. (2), and W(G) a sharply 
peaked first-order Bessel function [11], the width 
of which is proportional to (~-R w) i. The damp- 
ing envelopes E(G)  and the specimen potential 
vary only slowly over W(G), so that these func- 
tions may be taken as constant. With eq. (2) we 
then obtain: 

I~(G) = a ( G )  - 2 c r V ( G ) E ( G ) f s i n ( 2 ~ r x ( G ' ) )  

x w ( 6 -  e ' )  de'. (lS) 

Changing variables G ' =  e -  H and expanding X 
to first order around e yields: 

I~(G) = ~ ( G )  - 2~rV(G)E(G)  sin(Z~-A~(e)) 

× fcos(2~rOX . H ) W ( H )  dH. (19) 
J \ ~e  

The integrand of this expression is just the Fourier 
transform of the window function itself, but now 
in reciprocal space and with O)/aG as the argu- 
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ment. The passband for transferred spatial fre- 
quencies is given by the requirement 

= + > R w ,  (20) 

or, using the same notat ion as in eq. (10), at the 
maximum spatial frequency: 

3 3 aCsA G m a  x = R w. (21) 

Eqs. (20) and (21) simply mean that the delocal- 
ization of the information in the image, given by 
Ox/OG, must be smaller than the half-width of 
the detector. The delocalization depends on the 
spatial frequency involved and is large when the 
phase-transfer function oscillates rapidly. Clearly, 
the same focus that optimizes the source-depen- 
dent envelope function also optimizes the image 
localization, as both are dependent on ~x/OG 
(see also ref. [9]). Eqs. (20) and (21) do not 
represent an attenuating envelope function, but 
the window function of the detector transforms to 
a function with a sharp cut-off frequency in recip- 
rocal space, dictated by the size of the detector. 

On the other hand, the size of the detector is 
limited by the number N and the size D of the 
pixels: 2R w = ND. Assuming that the scintillator 
causes a Gaussian-shaped spreading of the high- 
energy electrons [12], the sampling may be de- 
scribed in reciprocal space by an envelope func- 
tion 

ED(G)  = exp[ -½~2G2D2]  

expl- [ N 2 ]" 
(22) 

In the second part of the equation we have used 
eq. (21). The quantum detection efficiency is not 
considered here. The sampling as described here 
is just according to the Nyquist sampling theo- 
rem. In practice, however, an additional oversam- 
pling by a factor two seems necessary [9], thus 
halving the number of independent image pixels. 
Including the point resolution, we then obtain for 
the information limit due to the limited detector 
size (i.e. number of independent image pixels): 

( 12v~-~-a ~ 1/4 
Po = P4/ • (23) 

N l n ~ s  ! 

Thus the detector limits the resolution because of 
the limited number of resolved image points. This 
information limit is also dependent on the point 
resolution of the microscope, in a similar manner 
as the source-dependent limit (eq. (11)). It should 
be realized that in practice not all the points of 
the detector can be used in eq. (23), as this would 
leave a usable field-of-view of only one pixel. 
Rather, the value of N should be determined 
from a realistic border that, although imaged on 
the detector, cannot be used for valid image 
interpretation because of image delocalization. 
For 10002 CCDs, this could be a border of 200 
points (yielding N = 400), leaving a field-of-view 
of 6002 points in the reconstructed wave. For 
off-axis holography an extra magnification of 
about three is necessary because of the necessity 
to sample the interference fringes which have a 
spatial frequency of 3Gma x [9]. This reduces the 
number of independent pixels in the recon- 
structed wave by a factor of three. In that case, a 
realistic border could be 75 independent pixels 
(N  = 150), leaving a field-of-view of 180 pixels in 
the reconstructed wave. Clearly, this resolution 
limiting factor is much more severe for hologra- 
phy than for normal H REM or focus-variation 
type image reconstruction. 

3. Relative importance of resolution-limiting fac- 
tors 

In the previous section the resolution limits 
due to several factors have been derived. They 
are coupled to each other by eq. (4). If the 
relevant microscope and detection parameters 
were known, the various resolution limits could 
be calculated. However, several parameters are 
generally not known, or can be chosen more or 
less freely by the microscopist. In this section the 
relative importance of the factors will be dis- 
cussed, leading to some simple constraints on 
parameters such as sample drift and vibration, 
convergence angle and detector size. All resolu- 
tion limits given in eqs. (7), (11), (13), (15) and 
(23) are dependent  on the signal-to-noise ratio. 
In this section we will make the assumption that 
the contribution of all separate envelope func- 
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tions to the total attenuation of the wave function 
is the same. At the resolution limit, we will as- 
sume that all envelopes have a value of e-~, 
which is equivalent to I n s  = 1. 

Let us first consider the factors which govern 
the information limit imposed by electrical insta- 
bilities combined with the constant for chromatic 
aberration, as given by eqs. (5)-(7). For LaB 6 
guns, the total variance of the energy of the 
incoming electron beam (AV and AE together) is 
in general dominating over the instability of the 
objective-lens current, even despite the factor of 
four with which A I / I  has to be multiplied. Un- 
der conditions used for HREM,  the total energy 
spread is usually between 1.5 and 2.0 eV (FWHH).  
Assuming that the current has been stabilized to 
the 1 ppm level (rms value), this energy spread 
leads to a defocus spread of about 5 nm at 300 
kV, for a LaB 6 instrument. For a Schottky Z r / W  
FEG microscope, a total energy spread has been 
reported of about 0.8-0.9 eV [13]. This yields a 
defocus spread of about 3.7 nm (for 300 kV), 
leading to an improvement of the (chromatic) 
information limit of about 20%. In this case, the 
instability of the objective-lens current is the 
dominating term. The importance of A I l l  be- 
comes clear when considering the situation where 
the total energy spread is only determined by the 
theoretical minimum of the intrinsic energy 
spread of the FEG (0.3 eV for a cold FEG, 0.4 
eV for a Schottky FEG). In that case the defocus 
spread is reduced to 3.2 nm, which leads to an 
improvement of the information limit of only 5%. 
However, these values cannot be attained in prac- 

Table 1 
Maximum convergence angle a and minimum number of 
unusable image points N as a function of the ratio between 
point resolution and (chromatic) aberration limit, p~ ~Pc, for 
Gaussian focus (E 0) and optimum focus (eon t) (for the calcula- 
tion of a from eq. (29), it has been assumed that A = 0.01 lps) 

P~ ~Pc a (mrad) N (pLx) 

150 ~opt if0 Eopt 

1 0.58 2.3 53 13 
1.5 0.17 0.69 270 67 
2 0.07 0.30 853 213 
2.5 0.04 0.15 2082 521 
3 0.02 0.09 4320 1080 

tice because of the Boersch effect and high-ten- 
sion instabilities. The small theoretical difference 
between the energy spread of the cold FEG and 
the Schottky F E G  is totally negligible for the 
information limit. 

Because the resolution limit due to chromatic 
aberration is a given microscope parameter  and is 
usually quoted as " the"  information limit, we will 
use Pc as a "yardstick" and impose the condition 
that all other resolution limiting factors must be 
better. Thus, from p~ <Pc and using eq. (11) we 
find as a constraint for the convergence angle: 

a < - -  ( 2 4 )  
67rap~ p~ j 

Likewise, we can find from eq. (23) the constraint 
for the minimum number  of resolved points at 
the detector: 

N >  (25) 

Both a and N depend on the ratio PiPe, i.e. on 
how far beyond the point resolution of the micro- 
scope it is desired to retrieve the information. 
Several values for the maximum convergence an- 
gle and minimum number of image points are 
given in table 1. For the convergence angle we 
have assumed that in eq. (24) h = 0.011p~ (i.e. a 
point resolution of 0.23 nm at 200 kV and 0.18 
nm at 300 kV, which could be obtained with a C~ 
of about 1 mm). It must be remembered that the 
number N must be subtracted from the number 
of points available in the detector to obtain the 
usable number  of resolved image points. Clearly, 
both the maximum angle and the number of 
border points depend on the focus via the param- 
eter a, which is 0.25 for the optimum focus value 
defined in eq. (9). Around Scherzer focus the 
value of this parameters  is between 0.8 and 0.9, 
which means an improvement in the constraints 
on a and N of 10%-20%. Choosing the optimum 
focus allows a convergence angle four times as 
large as the values near Gaussian focus, thus 
enhancing the current density considerably with- 
out losing resolution. Values of a become pro- 
hibitively small only at ratios of PJPc > 3 (at 
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optimum focus). The increase of N with increas- 
ing ratio Ps/Pc is rather dramatic owing to the 
fourth power in eq. (30). For 10002 CCDs, the 
number  of points already becomes prohibitive at 
values near Gaussian focus when this ratio ex- 
ceeds 1.75, while at opt imum focus 2.5 seems to 
be the limit. For off-axis holography applications, 
the detector size is a more serious constraint as 
three times as many pixels are needed. Taking 
the hologram at opt imum focus is mandatory, but 
even then a ratio of about 1.75 seems to be the 
maximum that might be obtained with a 10002 
CCD camera. 

The constraints for specimen drift and vibra- 
tion can be easily derived from eqs. (13) and (15): 

d _< Pc = 0.8pc, (26a) 
77" 

1 
u _< --Pc ~ 0.3pc. (26b) 

~r 

It should be remembered  that the limits given 
above apply to the case where the attenuation 
due to all factors is the same. The limits given 
above can thus be regarded as being rather opti- 
mistic. If, on the other hand, it is demanded that 
the mechanical stability, the spatial coherence 
and the detector size hardly influence the infor- 
mation limit, the constraints are more severe. For 
instance, for an allowed increase of the informa- 
tion limit of 10% compared to Pc (i.e. Pi = 1.1pc) 
one finds Pd < 0.5Pc and p ,  < 0.2pc. 

Two factors may be easily influenced by the 
microscope operator:  spatial coherence via the 
beam convergence angle, and integrated speci- 
men drift via the exposure time. The other two 
(number of detector points and specimen vibra- 
tion) depend very much on the hardware. The 
convergence angle and the exposure time can be 
lowered, but only at the cost of a lower signal-to- 
noise ratio. This problem is explicitly addressed 
in the next section. 

4. Inf luence of  noise  on the resolution 

In the preceding sections the signal-to-noise 
ratio has been considered to be constant. In a 
more general description the resolution should be 

defined as the point where the product of the 
signal S (more accurately: the contrast) and the 
envelope disappears into the noise N. The S / N  
ratio (denoted by s) increases with the total dose 
incident on the specimen, determined by the cur- 
rent density and the exposure time. The current 
density increases with the square of the conver- 
gence angle a,  so that s(a, t) =Soaf[ .  Here  s o is 
the normalized signal-to-noise ratio, for a conver- 
gence angle of 1 mrad and an exposure time of 1 
s. So the resolution may be enhanced by longer 
exposure times and a larger convergence angle. 
On the other hand, however, the drift increases 
linearly with the exposure time, d(t)  = vt, limiting 
the resolution. And a larger convergence angle 
means a strong attenuation because of limited 
coherence. In this section we will first estimate 
values for the normalized signal-to-noise ratio, 
and then find the (approximate) opt imum expo- 
sure time and convergence angle yielding the best 
resolution limit. 

The normalized signal-to-noise ratio is propor- 
tional to the square root of the brightness /3 of 
the electron gun (in A cm -2 s r - l )  and further 
depends on the detection efficiency and the spec- 
imen contrast. Rose [6] has calculated the mini- 
mum electron dose which is necessary to obtain a 
significant signal (i.e. above the noise) within a 
pixel of a certain dimension (which we will take 
as the information limit). By analogy, we will 
derive an expression for the minimum detectable 
contrast in an image element, which translates 
into a range of reasonable values for the normal- 
ized signal-to-noise ratio s o . The image intensity 
in TEM is the combination of a small ripple on a 
fairly large background, formed by unscattered 
electrons (and, partly, inelastically scattered elec- 
trons). This also follows from eqs. (1) and (2), 
where the background is represented in recipro- 
cal space by the delta function. In one image 
element of dimensions p 2, the background signal 
is the electron dose multiplied by the dimensions 
of the element. The dose depends on the bright- 
ness of the electron gun/3, the exposure time and 
the angle of convergence used, so that for the 
background intensity: 

I o = Dp~ =/37rteZtp 2. (27) 
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We will assume that the noise is white, Poisson- 
distributed noise, which means that in each ele- 
ment it is of the order of /~0 electrons. The 
image contrast is equal to DEf ,  where E is the 
envelope function at the information limit and f 
the relative scattering amplitude of the crystal 
(for that frequency). The minimum contrast that 
can be detected should be above the noise by 
some factor k which lies between 1 and 3. This 
yields the relation 

D g f p  2 = kV~oo = k p i ' ~ ,  (281 

Combining eqs. (28) and (27) with eq. (4) which 
relates the envelope function to the signal-to- 
noise ratio, the normalized initial signal-to-noise 
ratio can be derived (using the proper units): 

s 0 = 443pi f ff~-, (29) 

with the brightness in A cm -2 sr -1. The perfor- 
mance of the microscope is now linked to the 
scattering inside the specimen by the factor f = 
f(Gmax). In the WPO approximation, this factor is 
the relative scattering factor of the material, which 
for the frequencies concerned (between 7 and 10 
nm-1)  lies between 5% and 25%, depending on 
the atomic number of the material. Clearly, a 
specimen of atoms with small atomic numbers 
will show less contrast, making it much more 
difficults to obtain the intrinsic information limit 
of the microscope. For crystals, the effect of 
dynamic channelling [1] may enhance the contrast 
on the atomic cores, but to what extent depends 
critically on the structure and the thickness of the 
material. For the value of k we will take 2, which 
means that the minimal contrast is twice as high 
as the standard deviation of the noise. Finally, 
the brightness of the electron guns at high volt- 
ages (200-300 kV) is estimated to be around 106 
A cm 2 sr-~ for LaB 6 guns and around 109 A 
cm -2 sr -~ for (Schottky) FEGs; see for example 
refs. [13,14]. Substituting these values in eq. (29), 
we then find for LaB 6 instruments at a resolution 
around 0.15 nm that ln(s 0) lies between 1.2 and 
2.2 (with angles in mrad). For field-emission guns 
at a resolution around 0.10 nm ln(s 0) lies be- 
tween 4.2 and 5.2. It should be noted that when 

the information limit is assessed from diffrac- 
tograms of an amorphous specimen, an averaging 
takes place in one dimension. This enhances the 
S / N  ratio by a factor of 20-30, or about 3 points 
on a log scale. In the case of image restoration 
via focus variation, more than one image (typi- 
cally 32) contribute to the restored image. The 
S / N  of the restored image is then improved by a 
factor of 6, which means that ln(s 0) ~ 6 for FEG 
instruments. 

In order to make the derivation of the opti- 
mum exposure time and convergence angle 
clearer, we will use the dimensionless parameter 
W = ( p i / p c ) 2 ,  where Pc = V/~-A-/2 is the usual 
criterion for the information limit. Substituting 
the expressions developed for all envelopes in eq. 
(4) then yields at the information limit: 

k 2 +  o~2kZw + 2w 2 + (kZ t  2 + k2u)W 3 

= W 4 In(sore/ t ) ,  (30t 

w h e r e  k d = ~ U / ( p c ~ / 6 )  and k u = ~ ' u / p  c. The 
constants k s and k N are defined as: 

• 7raCsA3 6"n'a(-~ } (~-~) 4 , (31a) 
k~ AP 3 

7"i"~aCs '~3 127/'a~/2- ( Os / 4, (31b) 
k x  NO 4 - N Pc ) 

which now depend on the point resolution of the 
microscope. Eq. (30) gives the relation between 
resolution, exposure time, angle of convergence 
and several other resolution-limiting parameters. 
To optimize the exposure time and the angle of 
beam convergence, we can differentiate eq. (30) 
with respect to t and a. This yields: 

- , (32a) 
a ° o t -  k~/2 6~-a~-  Ps 

1 
toot -  2kd(pP~i)~0.39(@i) .  (32b) 

These relations give the optimum exposure time 
and convergence angle as a function of the infor- 
mation limit that can actually be reached. Note 
that top t only depends on the drift rate c, in such 



A.F. de Jong, D. Van Dyck / Ultimate resolution and information in electron microscopy. H 75 

a way that the t o ta l  drift during the exposure, 
Utopt, is kept constant at 0.39pi (compare eq. 
(26a)). The opt imum convergence angle mainly 
depends on the ratio between information limit 
and point resolution, while the focus plays a role 
via the constant a which varies from 1 (Gaussian 
focus) to 0.25 (optimum focus). The relation be- 
tween the information limit and microscope-de- 
pendent  constants, including the signal-to-noise 
ratio, is found by substituting eqs. (32) in (30): 

k 2 + 2 w  2 + k2w 3 + ( ¼ -  g ) w  4 = ~-w7 4 In  w ,  

(33) 

with 

{s0) 
K = I n  2ksk~-  d . 

The values of the microscope constants may vary 
widely, but in realistic cases we may estimate that 
k N varies between 0.4 and 4 and k u between 0.3 
and 1, while the constant K varies between 0 and 
6. Of  course, w will be of the order of 1. Eq. (33) 
can be solved numerically using a Newton itera- 
tion scheme. The relation between Pi/Pc and the 
"general"  constant K is given in fig. 3 for several 
values of k N and k u. Fig. 3 may be read as 
follows: given a set of constants, depending on 
drift rate, spherical aberration and signal-to-noise 
ratio, we may calculate K, and find from fig. 3 
the best obtainable information limit Pi/Pc" From 
this value we may then calculate the opt imum 
exposure time and beam-convergence angle, us- 
ing eqs. (32). K may change with the normalized 
signal-to-noise ratio (or gun brightness), with the 
ratio Ps/Pc and with the drift rate. An increase of 
the vibration amplitude (fig. 3a) shifts the curve 
upwards, decreasing the resolution. Especially 
above the threshold u / p  c = 0.3 the resolution 
deteriorates rapidly. The number  of border  pixels 
in the detector only starts to influence the resolu- 
tion for N < 250, i.e. for a 1 0 0 0 2  CCD camera 
the field-of-view can easily be about 750 pixels. In 
the case that we have a magnification of 500 000 
(about 0.05 nm per pixel), this leaves a field-of- 
view of 37.5 rim. However, for holography where 
the number  of necessary pixels is again increased 
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Fig. 3. Relative information limit, P i / P c ,  which can be ob- 
tained as a function of the general microscope constant K, (a) 
for several values of vibration amplitude u/pc and (b) for 
several values of  the number  of unusable pixels N. The 
constant K has a logarithmic dependence on the (initial) 

signal-to-noise ratio. 

by a factor of three (i.e. 333 pixels in the recon- 
structed wave function), the field-of-view in the 
reconstructed image is then only about 80 pixels 
(about 4 nm), which imposed a serious constraint. 

Several typical examples are given in fig. 4 (for 
an LaB 6 source, with an assumed Pc of 0.15 nm) 
and fig. 5 (for a FEG, with an assumed Pc of 0.1 
nm), as a function of the normalized signal-to- 
noise level s 0. All (hypothetical) microscopes op- 
erate at 300 kV and have a point resolution of 0.2 
nm. For one case (for each source type) the 
mechanical stability has been chosen twice as 
good as for the other one, relative to the chro- 
matic aberration limits. We have extended the 
range of s o somewhat further than the limits 
derived from the Rose limit to cover also cases 
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like diffractograms and focal series reconstruc- 
tion. Note that several values can only be esti- 
mated, which causes an uncertainty in the values 

1.4 

Q .  

1.3 

1.2 

1.1 

1.0 

0.9 

~ (a) 

I 

1.5 2 2.5 3 3.5 4 

In (So) 

7.0 

6.0 

5.0 

.,_o 4.0 

3.0 

2.0 

1.75 

(b) 

I I I 1 I 

1.5 2 2.5 3 3.5 4 

In (So) 

1.50 

~- 1.25 

E 1.00 

0.75 

0.50 

0.25 

(c) 

I I I I 

1.5 2 2.5 3 

In (So) 

I 

3.5 

of Pi of approximately 10%. However, trends may 
be deduced more accurately from figs. 3, 4 and 5. 

Concentrating first on the information limit, it 
may be observed that by improving the mechani- 
cal stability by a factor of two, the actual informa- 
tion limit may be increased by about 15%. For 
LaB 6 instruments the information limit lies in 
general above Pc (up to 30%), while for FEG 
instruments Pi lies around Pc ( - 1 0 %  to + 10%). 
Regarded over the total range, the information 
resolution limit is rather sensitive to the normal- 
ized signal-to-noise ratio (which in turn depends 
on the gun brightness). Within the narrower 
boundaries dictated by the Rose limit (1.2-2.2 for 
LAB6, 4.2-5.2 for FEG), the information limit 
hardly changes with the signal-to-noise ratio. It 
then mainly depends on the vibration amplitude 
(relative to p~.). It is clear that the use of a FEG 
will help to improve the resolution, not only 
because of a smaller focus spread A but also 
because of the enhanced brightness. 

The graphs of the optimum exposure time top t 
confirm the previous suggestions, which follow 
from eq. (26a). /opt is not very sensitive to the 
normalized signal-to-noise ratio s 0 for a given 
drift rate. The opt imum exposure time is only 
related to the drift rate L~ in such a way that the 
total drift d = U / o p  t is constant ( d / p  i .-~ 0.4, so 
that Ed(Gma x) ~ 0.75). The shorter exposure times 
for the FEG instruments are caused by the lower 
values of Pc (0.1 instead of 0.15 nm). In general 
the opt imum exposure times are somewhat longer 
than might be expected from "normal  mi- 
croscopy" experience. This is the case because it 
appears to be more important to gain on the 
S / N  than to lose on the drift envelope itself 
(within certain limits). Because the total (opti- 
mum) drift is constant, the constraint on the drift 
rate, as calculated in the preceding sections, is 

Fig. 4. Re la t ive  in format ion  l imit  P i / P c ,  o p t i m u m  exposure  
t ime t (s) and  o p t i m u m  convergence  angle  a (mrad)  as a 
funct ion of the ini t ial  s ignal- to-noise  ra t io  ( logar i thmic  scale), 
for microscopes  equ ipped  wi th  an LaB 6 gun (300 kV, p~ = 0.2 
nm, p c = 0 . 1 5  nm). Solid line: u /pc=0 .2 ,  t : = 0 . 0 1  n m / s ,  
N = 600. Do t -dashed  line: u / p c  = 0.4, t' = 0.02 n m / s ,  

N = 300. 
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now shifted to a constraint  on the signal-to-noise 
ratio. The  drift rate may be high if it is possible to 
obtain a significant S / N  (of the order  of  e 2) in 
the very short  exposure time necessary to keep 
the total drift below 0.4pi. On the o ther  hand, it 
is not useful to keep the total drift far below this 
number,  as this will unncessarily decrease the 
S / N  and thus the resolution. 

The same t rend may be observed for the opti- 
mum convergence angles: for LaB 6 guns they are 
somewhat  larger than the values commonly  used 
in H R E M  practice. However,  the op t imum con- 
vergence angles depend  more  on the signal-to- 
noise level and on the mechanical  (in)stabilities, 
via the third-power dependence  on the informa- 
tion limit (eq. (32a)). For  the FEG,  they are 
smaller than those of  the LaB 6 guns by only a 
factor of  about  5. This is somewhat  smaller than 
might be expected f rom the enormous  gain in 
brightness (by a factor  of  103), which suggests an 
op t imum convergence angle a factor  of  30 smaller 
(order  of  0.03 mrad).  Thus, the gain of  brightness 
when using a F E G  lies only partly in an improved 
spatial coherence,  it is also a gain in current  
density. It should be remembered ,  however, that  
we have chosen the " o p t i m u m "  focus condition, 
which is much fur ther  under  focus than usual for 
microscopy. Because of  this focus value, the 
source envelope function is not as strongly atten- 
uated around maximum spatial frequencies as 
would be the case at Scherzer  focus (compare  fig. 
1). 

We have also investigated the sensitivity of  the 
actual information limit caused by small devia- 
tions from the op t imum exposure time and con- 
vergence angle. In general,  the information limit 
quickly deter iorates  for very short exposure times, 
while it deter iorates  only gradually for longer 
exposure times. The  same general  trends holds 
for the convergence angle: the op t imum conver- 

Fig. 5. Relative information limit Pi/Pc, optimum exposure 
time t(s) and optimum convergence angle a (mrad) as a 
function of the initial signal-to-noise ratio (logarithmic scale), 
for microscopes equipped with a FEG (300 kV, Ps = 0.2 nm, 
Pc = 0.10 nm). Solid line: u / p  c = 0.2, v = 0.01 nm/s, N = 600. 

Dot-dashed line: u / p  c = 0.4, t: = 0.02 nm/s, N= 300. 
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gence angles are not very critical, but for smaller 
angles the information limit quickly deteriorates. 

The results of this section lead to a strategy 
that may be followed if the aim is to get the best 
information limit in a micrograph (e.g. for resolu- 
tion tests on an amorphous carbon or germanium 
thin film). 
(1) Estimate the information limit. This is slightly 
above Pc for LaB 6 instruments and slightly below 
that value for F E G  instruments. 
(2) Using the information limit, the approximate 
opt imum focus may be estimated from eq. (9) and 
the opt imum convergence angle from eq. (32a). 
The actual convergence angle can be measured in 
the diffraction pattern of a sample with a known 
spacing. However, as already mentioned in sec- 
tion 2.2, for a F E G  the illuminating source is not 
completely incoherently filled, which leads to a 
slight overestimation of the effect of the source 
envelope. 
(3) From the measured drift rate, the optimum 
exposure time may be calculated with eq. (32b). A 
somewhat longer exposure time causes less reso- 
lution loss than a too short exposure time. 
(4) The total electron dose is now determined by 
the opt imum exposure time and the opt imum 
angle of beam convergence, not by the exposure- 
meter  and emulsion setting of the microscope! 
However, these may be limited to some extent by 
over-exposure of the plate or the CCD detector. 
If possible, these should be adjusted to the elec- 
tron dose obtained, and not the other way around. 

If we calculate the actual signal-to-noise ratio 
by including the convergence angle and the expo- 
sure time we find for the LaB 6 instruments near 
the Rose limit that ln(s) = 2-3,  which seems rea- 
sonable for H R E M  images. This means that the 
cut-off usually taken for the envelope function 
(e -2) is reasonable, but not only the chromatic 
aberration envelopes but also the other envelopes 
should be taken into account. When the informa- 
tion limit is examined using diffractograms, an 
effective averaging takes place over many pixels 
(effectively in one dimension), so that the effec- 
tive s 0 is enhanced by a factor of 20-30. This 
then yields ln(s 0) = 4, which from the upper  limit 
of fg. 4 leads to an information limit somewhat 
below Pc. For the F E G  instruments, the actual 

signal-to-noise ratio becomes In(s)-~ 3-4,  which 
means that the envelope function extends some- 
what further than the e -2 limit usually taken. 
Compared to the situation with LaB 6 sources, the 
actual signal-to-noise ratio is improved by a fac- 
tor of about 3. Again, if we examine the informa- 
tion limit using diffractograms, ln(s 0) is enhanced 
to about 7 in which case we will find information 
limits about 10% below Pc. 

5. Conclusions 

We have investigated factors limiting the infor- 
mation limit p~ of a transmission electron micro- 
scope, which is defined as the inverse of the 
spatial frequency G,~x where the envelope of the 
contrast transfer function disappears below the 
noise. This limit is dependent  on the signal-to- 
noise ratio, which in turn depends on the electron 
dose incident on the specimen, on the specimen 
contrast and on the detector efficiency. The elec- 
tron dose is determined by the brightness of the 
gun used, the convergence angle and the expo- 
sure time. For normalized conditions of 1 s expo- 
sure time and 1 mrad half-angle of beam conver- 
gence, we use the Rose limit for the detectable 
contrast and estimate that the signal-to-noise ra- 
tio is between e ~ and e 2 for LaB 6 instruments 
and between e 3 and e 4 for F E G  instruments. 

Apart  from the resolution-limiting factors usu- 
ally taken into account (limited lateral coherence 
caused by a finite amount of beam convergence 
and focus spread caused by chromatic aberration), 
we have also considered specimen drift and vibra- 
tion. Moreover, we have derived an envelope 
function related to the limited number  of re- 
solved image points on the detector (e.g. 10002 
for a CCD). This number imposes a resolution 
limit because for an accurate description of the 
highest spatial frequencies both a small sampling 
interval and a large field-of-view are needed. For 
all incoherent effects we have derived separate 
information limits. Subsequently, we have found 
tolerances for all the parameters  involved in the 
incoherent damping effects, relative to the chro- 
matic information limit Pc. Both the maximum 
allowable angle of beam convergence and the 
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minimum number  of image points needed de- 
pend markedly on the ratio between point resolu- 
tion and information limit. Working under condi- 
tions of opt imum focus as defined by Lichte [9], 
the beam convergence angle does not impose a 
limit on the information. However, for CCD de- 
tectors with 10002 pixels, the detector envelope 
becomes limiting when Ps/Pi > 2.5. For off-axis 
holography applications the detector is a much 
more important limiting factor already at Ps/Pi > 
1.75. The maximum allowable vibration ampli- 
tude u and the specimen drift d during the 
exposure are linearly related to the desired infor- 
mation limit: Uma x ~ 0.2Pi, dma x ~ 0 . 5 P i .  If  these 
thresholds are exceeded, specimen drift and vi- 
bration become important resolution-limiting fac- 
tors. 

From a consideration of the signal-to-noise 
ratio, which varies with the angle of beam conver- 
gence and with the exposure time, it has been 
possible to derive the optimum values for expo- 
sure time and convergence angle that yield the 
best information limit. The opt imum exposure 
time is only related to the drift rate in such a way 
that the total drift is d = 0.4pi. The opt imum 
convergence angle is related to the point resolu- 
tion of the microscope and is somewhat more 
dependent  on the S / N ,  but typical values are 
0.7-1.3 mrad for LaB 6 instruments and 0.15-0.25 
mrad for F E G  microscopes (both at 300 kV with 
0.2 nm point resolution). For both the exposure 
time and the convergence angle the calculated 
values are somewhat higher than those commonly 
used in practical HREM.  In general, it seems 
more important to gain on the signal-to-noise 
ratio than to lose on the drift or the beam conver- 
gence envelope. 

Using these opt imum values, the best obtain- 
able information limit may be calculated. With 
realistic values for specimen vibration and drift 
rate, we then find an actual information limit 
which for LaB 6 instruments lies above Pc by 
about 15% but for F E G  instruments is very close 
to Pc. When the information limit is experimen- 
tally assessed using diffractograms of an amor- 
phous object, the image is usually averaged (by 
computer  or by the eye) in the angular direction. 
This effectively enhances the signal-to-noise ra- 

tio, yielding an apparent  information limit about 
15% better  than that obtained from the Rose 
limit. In the special case of image restoration via 
focus variation, more than one image (typically 
32) contribute to the restored image. The signal- 
to-noise ratio of the restored image is then im- 
proved by a factor 6 which may improve the 
information limit in the restored wave function by 
about 10%. 

Comparing LaB 6 with F E G  microscopes in 
this optimization procedure, we find that the 
increased brightness of the FEG is only partly 
used for a better  spatial coherence (smaller con- 
vergence angle). An important improvement on 
the resolution is obtained just from a better  sig- 
nal-to-noise ratio. If  we assume that the bright- 
ness of the F E G  is bet ter  than that of the LaB 6 
by a factor of 103, it seems favourable to use a 
factor 25 to obtain a better  spatial coherence (a  
smaller by a factor of 5). Part of the improved 
brightness is needed to maintain enough counting 
statistics at a smaller information limit: lowering 
Pi f r o m  0.15 to 0.1 nm means an enhancement  in 
the needed dose of 2.25. The remaining part  of 
the brightness (a factor of about 20) is then used 
to decrease the (relative) noise level, so that 
In(S/N) is enhanced by about 1.5. The cut-off 
value of e -2 usually taken to indicate the infor- 
mation limit of the transfer function must be 
extended to e 3s for F E G  instruments. 

The above analysis applies to single micro- 
graphs and in the framework of a linear imaging 
approximation. For most crystalline specimens, 
where non-linear imaging effects become more 
important,  it may be that some crystal spacings 
below the information limit are nonetheless visi- 
ble because of secondary interference. Still, the 
above analysis may be applied to the recon- 
structed wave function obtained by holography 
or, within the limits of a quasi-coherent imaging 
scheme, with focus-series restoration. 
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