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RELION, for REgularized LIkelihood OptimizatioN, is an open-source computer program for the refine-
ment of macromolecular structures by single-particle analysis of electron cryo-microscopy (cryo-EM)
data. Whereas alternative approaches often rely on user expertise for the tuning of parameters, RELION
uses a Bayesian approach to infer parameters of a statistical model from the data. This paper describes
developments that reduce the computational costs of the underlying maximum a posteriori (MAP) algo-
rithm, as well as statistical considerations that yield new insights into the accuracy with which the rel-
ative orientations of individual particles may be determined. A so-called gold-standard Fourier shell
correlation (FSC) procedure to prevent overfitting is also described. The resulting implementation yields
high-quality reconstructions and reliable resolution estimates with minimal user intervention and at
acceptable computational costs.

� 2012 Elsevier Inc. Open access under CC BY license.
1. Introduction

Macro-molecular structure determination by single-particle
analysis of electron cryo-microscopy (cryo-EM) images is a rapidly
evolving field. Over the past two decades many reconstructions
that reveal secondary structure elements have been obtained, e.g.
see (Boettcher et al., 1997; Lau and Rubinstein, 2012; Lander
et al., 2012), and recently several reconstructions to near-atomic
resolution have been reported (Wolf et al., 2010; Liu et al., 2010;
Yang et al., 2012). Improvements in electron microscopes and bet-
ter computational tools for image processing have been important
contributors to these successes. Moreover, on-going hardware
developments such as direct-electron detectors (Milazzo et al.,
2011; Brilot et al., 2012; Bammes et al., 2012) and phase-plates
(Nagayama, 2011; Barton et al., 2011; Fukuda et al., 2012) are
expected to improve data quality even further in the near future.
This is likely to enhance the applicability of cryo-EM structure
determination, as less noisy images will allow the visualization
of smaller macro-molecular complexes.

The increased applicability of the technique is expected to
attract new researchers to the field. Because conventional data
collection and processing procedures often rely on user expertise,
the needs for improved ease-of-use and automation are now
widely recognized. More convenient data collection schemes are
being developed through a combination of automated data acqui-
sition software (Suloway et al., 2005) and improvements in the
Y license.
latest generation electron microscopes (Shrum et al., in press;
Fischer et al., 2010). To cope with the large amounts of data from
these experiments, semi-automated image processing pipelines
and dedicated electronic notebooks have been proposed (Lander
et al., 2009; Ludtke et al., 2003). Continuing developments in these
areas are expected to increase the accessibility of cryo-EM struc-
ture determination to inexperienced users.

However, many cryo-EM projects still suffer from important
hurdles in image processing that cannot be overcome by automa-
tion and increased volumes of data alone. Existing image process-
ing procedures often comprise a concatenation of multiple steps,
such as particle alignment, class averaging, reconstruction, resolu-
tion estimation and filtering. Many of these steps involve the tun-
ing of specific parameters. Whereas appropriate use of these
procedures may yield useful results, suboptimal parameter set-
tings or inadequate combinations of the separate steps may also
lead to grossly incorrect structures, thus representing a potential
pitfall for newcomers to the field.

Recently, I described a Bayesian approach to cryo-EM structure
determination, in which the reconstruction problem is expressed
as the optimization of a single target function (Scheres, 2012). In
particular, the reconstruction problem is formulated as finding
the model that has the highest probability of being the correct
one in the light of both the observed data and available prior infor-
mation. Optimization of this posterior distribution is called maxi-
mum a posteriori (MAP), or regularized likelihood optimization.
The Bayesian interpretation places the cryo-EM structure determi-
nation process on a firm theoretical basis, where explicit statistical
assumptions about the model and the data, as well as the optimi-
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zation strategy itself, can be discussed and improved if deemed
necessary. Whereas conventional refinement procedures employ
many ad hoc parameters that need to be tuned by an expert user,
the Bayesian approach iteratively learns most parameters of the
statistical model from the data themselves.

This paper describes the implementation of the Bayesian
approach to single-particle reconstruction in the stand-alone com-
puter program RELION, which stands for REgularized LIkelihood
OptimizatioN. The theoretical implications of the statistical
approach represent a huge challenge for its implementation in a
useful computer program. Various algorithmic developments are
described that allow MAP optimization of single-particle recon-
structions at an acceptable computational cost. Moreover, the the-
oretical framework provided by the Bayesian approach may yield
valuable insights into outstanding questions. As an example of this,
I will describe an approach that uses the statistical data model to
estimate the accuracy with which individual particles may be
aligned and to quantify the contribution of different frequencies
to this. Finally, because in principle some degree of overfitting
might still go by unnoticed in the previously proposed MAP opti-
mization approach (Scheres, 2012), a new procedure is described
that eradicates the possibility of overfitting by the use of so-called
‘‘gold-standard’’ FSC calculations (Henderson et al., 2012; Scheres
et al., 2012). Application of RELION to both simulated and experi-
mental data illustrates that reconstructions that are free from over-
fitting may be obtained in a highly objective manner, without
compromising reconstruction quality and at acceptable computa-
tional costs.

2. Approach

2.1. Theoretical background

MAP refinement of cryo-EM single-particle reconstructions is
based on the following linear model in Fourier space:

Xij ¼ CTFij

XL

l¼1

P/
jl Vkl þ Nij; ð1Þ

where:

� Xij is the jth component, with j ¼ 1; . . . ; J, of the 2D Fourier
transform Xi of the ith experimental image, with i ¼ 1; . . . ;N.
� CTFij is the jth component of the contrast transfer function for

the ith image.
� Vkl is the lth component, with l ¼ 1; . . . ; L, of the 3D Fourier

transform Vk of the kth of K underlying structures in the data
set. Multiple structures K may be used to describe structural
heterogeneity in the data, and K is assumed to be known. All
components Vkl are assumed to be independent, zero-mean,
and Gaussian distributed with variance s2

kl.
� P/ is a J � L matrix of elements P/

jl . The operation
PL

l¼1P/
jl Vkl for

all j extracts a slice out of the 3D Fourier transform of the kth
underlying structure, and / defines the orientation of the 2D
Fourier transform with respect to the 3D structure, comprising
a 3D rotation and a phase shift accounting for a 2D origin offset
in the experimental image. Similarly, the operation

PJ
j¼1P/T

lj Xij

for all l places the 2D Fourier transform of an experimental
image back into the 3D transform.
� Nij is noise in the complex plane, which is assumed to be inde-

pendent, zero-mean, and Gaussian distributed with variance r2
ij.

Imagining an ensemble of possible solutions, the reconstruction
problem is formulated as finding the model with parameter set H
that has the highest probability of being the correct one in the light
of both the observed data X and the prior information Y. According
to Bayes’ law, this so-called posterior distribution factorizes into
two components:

PðHjX;YÞ / PðXjH;YÞPðHjYÞ ð2Þ

where the likelihood PðXjH;YÞ quantifies the probability of observ-
ing the data given the model, and the prior PðHjYÞ expresses how
likely that model is given the prior information. The likelihood is
computed based on the assumption of independent, zero-mean
Gaussian noise in the images, and one marginalizes over the orien-
tations / and class assignments k. The variance r2

ij of the noise com-
ponents is unknown and will be estimated from the data. Variation
of r2

ij with resolution allows the description of non-white, or col-
oured noise. The prior is based on the assumption that the Fourier
components of the signal are also independent, zero-mean and
Gaussian distributed with unknown and resolution-dependent var-
iance s2

kl (see Scheres, 2012 for more details). The model Ĥ, includ-
ing all Vkl;r2

ij and s2
kl, that optimizes the posterior distribution

PðHjX;YÞ is called the maximum a posteriori (MAP) estimate. Note
that previously discussed ML methods in the Fourier domain
(Scheres et al., 2007b) aimed to optimize PðXjH;YÞ.

Optimisation of PðHjX;YÞmay be achieved by the expectation–
maximization algorithm (Dempster et al., 1977), in which case the
following iterative algorithm is obtained:

V ðnþ1Þ
kl ¼

PN
i¼1

R
/ CðnÞik/

PJ
j¼1P/T

lj
CTFijXij

r2
ij
ðnÞ d/

PN
i¼1

R
/ CðnÞik/

PJ
j¼1P/T

lj

CTF2
ij

r2
ij
ðnÞ d/þ 1

s2
kl
ðnÞ

; ð3Þ

r2
ij
ðnþ1Þ ¼ 1

2

XK

k¼1

Z
/
CðnÞik/ Xij � CTFij

XL

l¼1

P/
jl V
ðnÞ
kl

�����
�����

2

d/; ð4Þ

s2
kl
ðnþ1Þ ¼ 1

2
V ðnþ1Þ

kl

���
���2; ð5Þ

where CðnÞik/ is the posterior probability of class assignment k and ori-
entation assignment / for the ith image, given the model at itera-
tion number (n). It is calculated as follows:

CðnÞik/ ¼
PðXijk;/;HðnÞ;YÞPðk;/jHðnÞ;YÞPK

k0¼1

R
/0 PðXijk0;/0;HðnÞ;YÞPðk0;/0jHðnÞ;YÞd/0

; ð6Þ

with:

PðXijk;/;HðnÞ;YÞ ¼
YJ

j¼1

1

2pr2
ij
ðnÞ exp

Xij � CTFij
PL

l¼1P/
jl V
ðnÞ
kl

���
���2

�2r2
ij
ðnÞ

0
B@

1
CA;

ð7Þ

and Pðk;/jHðnÞ;YÞ may be used to express prior information about
the distribution of the hidden variables k and /. In practice, the
integrations over / are replaced by (Riemann) summations over
discretely sampled orientations, and translations are limited to a
user-defined range. Also, the power of the signal, s2

kl, and of the
noise, r2

ij , are estimated as 1D vectors, varying only with the resolu-
tion of Fourier components j and l.

The iterative algorithm in Eqs. (3)–(7) is started from an initial
estimate for Vk: the starting model. If K > 1, multiple different
starting models are obtained by random division of the data set
in the first iteration. The user controls the number of models K that
is to be refined simultaneously. Initial estimates for skl and rij are
calculated from the power spectra of the starting model and indi-
vidual particles, respectively.

It is important to note that the algorithm outlined above is a
local optimizer. Thereby, the outcome of the refinement depends
on the suitability of the starting model, and grossly incorrect start-
ing models may lead to suboptimal results. Typically, to reduce
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bias to a possibly incorrect starting model, one applies a strong
low-pass filter to the starting model.

2.2. Increasing computational speed: fast Fourier-space interpolation

Eqs. (3)–(7) represent a daunting computational challenge.
Within each iteration, for every experimental image one has to
evaluate the posterior probability CðnÞik/ for all possible / and k,
and each image has to be back-projected into the 3D map with
the corresponding weight for all / and all k. Previous ML imple-
mentations reduced computational costs by keeping a set of
pre-calculated 2D reference projections on a relatively coarsely
sampled orientational grid in memory (Scheres et al., 2007a,b).
Moreover, summations over all experimental images, in-plane
rotations and translations were performed in 2D, and the corre-
sponding weighted sums were also stored in memory. The result-
ing quadratic scaling of computer memory usage with the angular
sampling rate in practice meant that ML refinements could not be
performed with angular sampling rates finer than 10�, which
seriously limited attainable resolutions.

RELION implements a drastically different approach. Instead of
storing many 2D images in computer memory, it calculates projec-
tion and back-projection operations on-the-fly. The main advan-
tage of this approach is that memory requirements no longer
increase with increasing angular sampling rates, apart from storing
a larger CðnÞik/ array. However, because the (back-) projection opera-
tions have to be performed for many experimental images and a
large number of orientations, this approach requires fast calcula-
tion of the (back-) projection operations in order to be computa-
tionally feasible.

As mentioned above, the projection and back-projection opera-
tions involve taking 2D slices out of a 3D Fourier transform, and
putting them back in. This requires some sort of interpolation
because the 3D Cartesian grid on which Vk is sampled does not
generally coincide with the 2D Cartesian grid of Xi. To speed up
the calculations inside RELION, the 3D Fourier transform Vk is over-
sampled twice by zero-padding of the map in real-space, and pro-
jection operations are then performed using linear interpolation in
Fourier space. The linear interpolation scheme makes matrices P/

very sparse, so that the computational cost of the projection oper-
ations is minimized and the integrals over / in Eqs. (3)–(7) may be
evaluated within reasonable time. To reduce artifacts in the projec-
tions, a reverse gridding correction (with a sinc2-function) is
applied to the 3D map prior to calculation of the Fourier transform.

A similar, inverse procedure is followed for the back-projection
operations, where 2D Fourier transforms Xi are placed into an
oversampled 3D transform using the transpose of matrix P/. How-
ever, the summation over all back-projected images in the numer-
ator of Eq. (3) then results in a severely non-uniformly sampled 3D
transform. This transform must be properly weighted before the
actual reconstruction is obtained by an inverse Fourier transform
operation, since straightforward division by the weights in the
denominator of Eq. (3) would lead to unsatisfactory results. For this
purpose, RELION implements a modified version of an iterative
gridding reconstruction algorithm that was previously proposed
for medical magnetic resonance imaging (MRI) (Pipe and Menon,
1999) and positron emission tomography (PET) (Matej and Lewitt,
2001). This algorithm is described in more detail in Appendix A.

2.3. Increasing computational speed: adaptive expectation–
maximization

With the computational cost of the (back-) projection opera-
tions reduced, the most costly operation in Eqs. (3)–(7) is the cal-
culation of the l2-norm in Eq. (7), which has to be evaluated for
all i; k and /. In particular, the orientations / span a large 5D do-
main, comprising 3 rotations and 2 translations. Several
approaches have previously been proposed to accelerate these
calculations through domain reduction (Scheres et al., 2005;
Tagare et al., 2010). In the domain reduction strategy, the integra-
tion over the entire domain is replaced by an integration over a
significantly smaller sub-domain. Because in practice the posterior
distribution CðnÞik/ is close to zero for many k and /, this turns out to
be an effective way to approximate the total integration at strongly
reduced computational costs.

RELION implements a modified version of the adaptive expecta-
tion maximization algorithm that was proposed by Tagare et al.
(2010). For each experimental image, in a first pass CðnÞik/ is evalu-
ated over the entire domain using a relatively coarsely sampled
grid of /. The array of all CðnÞik/ is sorted, and a sub-domain of all k
and / is selected that corresponds to the highest values of CðnÞik/ that
sum to a significant fraction n, typically 99.9%, of the total probabil-
ity mass on the coarse grid. Then, in a second pass, CðnÞik/ is evaluated
only over the selected sub-domain using a finer grid.

The adaptive algorithm requires two discrete sampling grids of
the continuous orientations /: a coarse one and a fine one. To avoid
a bias towards certain orientations, both grids ought to be uni-
formly sampled over the entire domain. For computational effi-
ciency it is also convenient if the sampling points on the coarse
grid can be related at little computational cost to their neighbour-
ing points on the fine grid. For the sampling of the 2D translations,
both requirements are easily fulfilled using Cartesian grids in
Euclidian space. However, for the 3D orientations, there is no
known point set that achieves uniform sampling.

RELION parameterizes 3D orientations by three Euler angles,
and approximates a uniform sampling of the first two Euler angles
on the sphere using the HEALPix framework (Gorski et al., 2005).
The HEALPix approach was originally proposed for the field of
astronomy (where pixelized images of the sky are represented on
a sphere), and it has two characteristics that are particularly useful
for the adaptive expectation–maximization algorithm outlined
above: (i) it yields a reasonable approximation to a uniform sam-
pling of the sphere so that bias towards certain orientations may
be minimized; and (ii) it generates discrete grids in a hierarchical
way that allows fast calculation of neighbouring sampling points
in grids with distinct angular sampling rates. In particular, each
subsequent grid in the hierarchy contains four times more sam-
pling points than the previous one, yielding an angular sampling
rate that is approximately twice as high.

The implemented adaptive expectation maximization algo-
rithm uses a given grid in the HEALPix hierarchy for the coarse
sampling of the first two Euler angles, and the next one in the hier-
archy for the fine sampling. In addition, it uses a two times finer,
linear sampling of the third Euler angle and of both translations
in the fine grid. Thereby, the fine grid will have 25 ¼ 32 times more
sampling points than the coarse sampling grid. Consequently, the
maximum speed-up of the adaptive approach will be close to 32
(i.e. if only one sampling point contributes to 99.9% of the probabil-
ity mass on the coarse grid). In practice, the posterior distributions
are typically relatively broad during the initial stages of refinement
(where low-resolution models provide less information to distin-
guish different orientations), and these distributions become more
‘‘spiky’’ towards convergence. Therefore, more orientations will
contribute significantly to the probability mass on the coarse grid
during the first few iterations when speed-ups are typically less
pronounced, while towards the end of the refinement speed-ups
become much more important.

2.4. Increasing computational speed: local orientational searches

Another effective approach to domain reduction is to limit the
integrations to those orientations in the vicinity of the optimal ori-
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entations from the previous iteration. This approach is used in
many structure determination procedures, and it is sometimes re-
ferred to as performing local angular searches. This approach may
provide large speed-ups, but its effect on the quality of the recon-
struction depends strongly on the assumption that the optimal ori-
entations from the previous iteration are close to the true
orientations. Therefore, local angular searches with fine orienta-
tional samplings are most useful during the later stages of refine-
ment, after exhaustive searches with coarser samplings have
provided orientations that are relatively close to the correct ones.

Inside the statistical framework, local angular searches may be
implemented as a prior on the hidden variables. By setting
Pðk;/jHðnÞ;YÞ ¼ 0 for orientations that are far away from the opti-
mal ones in the previous iteration, integrations over those orienta-
tions may be avoided. Conventional local angular searches, where
equal probabilities are given to orientations in a user-defined search
range correspond to using a rectangular function for Pðk;/jHðnÞ;YÞ.
RELION uses a truncated Gaussian function for Pðk;/jHðnÞ;YÞ, and
integrations are limited to orientations within three times a user-
defined standard deviation. This procedure downweights orienta-
tions that are relatively far away from the optimal orientations in
the previous iterations, thereby providing a more continuous transi-
tion from orientations that are close to the previous ones and orien-
tations that fall outside the user-defined search range.

2.5. Assessing alignment accuracy based on SNR considerations

The accuracy with which individual particles may be aligned re-
mains an unknown in many structure determination procedures.
However, this value is of great interest, as it may be used to predict
the attainable resolution for a given data set. The effect of orienta-
tional errors may be modelled by a B-factor on the reconstruction,
so that orientational errors of a given magnitude will limit the res-
olution in a predictable manner, e.g. see Table 2 in Henderson et al.
(2011).

The statistical assumptions of the MAP approach may be used to
estimate the accuracy with which orientational assignments can be
made for a given model. If orientation /T is the true one for the ith
image, then the ratio RF=T of the posterior probabilities of assigning
a false orientation /F and the true orientation /T (for a given class
assignment k, and assuming equal prior probabilities for both ori-
entations) is given by:

RF=T¼
Cik/F

Cik/T
¼ exp

XJ

j¼1

CTFij
PL

l¼1P/F

jl Vkl�CTFij
PL

l¼1P/T

jl Vkl

���
���2

�2r2
ij

0
B@

1
CA: ð8Þ

If RF=T is close to one for two neighbouring orientations, then
these orientations cannot be distinguished from each other. On
the other hand, if RF=T is very low, then the posterior probability
of assigning the correct orientation is much larger than assigning
the incorrect one, so that the correct orientation can readily be
identified. Inside RELION, at every iteration one assumes for a ran-
dom subset of 100 experimental images that the most likely orien-
tations from the previous iteration are the correct ones, and one
then modifies for each image each of the three Euler angles and
two translations in small steps until RF=T < 0:01. The average values
for the corresponding rotational and translational differences are
reported by the program, and these values are considered to repre-
sent the accuracy with which different orientations may be distin-
guished reliably.

2.6. Preventing overfitting: ‘‘gold-standard’’ FSC calculations

In many structure determination procedures the resolution is
assessed by FSC curves between reconstructions from halves of
the data set, while a single model is used for the angular assign-
ments. It is well-known that bias towards noise in this single model
may lead to spurious correlations between the half-reconstruc-
tions. Over-optimistic low-pass filtering based on the inflated
resolution estimates may then lead to further enhancement of
the noise in the model. As a result, during multiple refinement iter-
ations the amount of noise may gradually increase and final reso-
lution estimates may be grossly exaggerated. This phenomenon
has been called over-refinement, or overfitting. More realistic esti-
mates of resolution may be obtained by refining a separate model
for two independent halves of the data, so that FSC curves between
the two half-reconstructions are free from spurious correlations.
Such FSCs between independent reconstructions have been termed
‘‘gold-standard’’ FSCs (Henderson et al., 2012). As shown previ-
ously, ‘‘gold-standard’’ FSCs may be used to prevent overfitting
without loss of reconstruction quality (Scheres et al., 2012).

Although MAP optimization was shown to effectively reduce
overfitting, in theory some overfitting may still occur within the
original MAP approach. If somehow noise would build up in the
single reconstruction that is used for refinement, then the esti-
mated power of the signal, through Eq. (5), would be inflated,
which could then lead to overfitting. Although overfitting was ob-
served to be much reduced compared to conventional refinement
procedures, indications of a limited extent of overfitting in the
MAP approach were indeed observed for very noisy data, see
(Scheres, 2012) for more details.

To completely eradicate overfitting from the refinement process,
an approach to estimate the power of the signal based on ‘‘gold-
standard’’ FSC calculations was implemented inside the framework
of MAP optimization. For this purpose, the data set is divided into
two random halves at the outset of refinement, and two sets of mod-
el parameters H are refined separately, one for each half of the data.
Because refinements with K > 1 of independent random halves of
the data might converge to distinct classification solutions, this pro-
cedure was only implemented for the K ¼ 1 case, and in the follow-
ing all subscripts k have been dropped. At the end of every iteration,
an FSC curve between the two independent reconstructions is calcu-
lated, and this curve is converted into an estimate for the resolution-
dependent signal-to-noise ratio using:

SNRMAPðmÞ ¼ FSCðmÞ
1� FSCðmÞ ; ð9Þ

which is then used to estimate the power spectrum of the underly-
ing signal:

s2ðmÞðnÞ ¼ SNRMAPðmÞ
1

Nm

PNm
l2m
PN

i¼1

R
/ CðnÞi/

PJ
j¼1P/T

lj

CTF2
ij

r2
ij
ðnÞ d/

; ð10Þ

where l 2 m is used to indicate that the lth 3D Fourier component
lies within resolution shell m, and Nm is the total number of Fourier
components that lie within that resolution shell.

The estimated values for s2ðmÞ are then used to calculate the
optimal 3D linear filter for both reconstructions according to Eq.
(3). Note that despite the 1D-character of s2ðmÞ and FSCðmÞ, the
modelled SNR in the Fourier domain may still be anisotropic
through anisotropic CTF models and uneven orientational distribu-
tions in Eq. (3). Also note that Eq. (10) replaces Eq. (5) in the origi-
nal MAP algorithm.

Only upon convergence of the refinement may the two subsets
be joined to calculate a single reconstruction from all images. This
final reconstruction will have a higher SNR than the two recon-
structions from the independent halves of the data, but in order
to prevent overfitting it may no longer be used in refinement. As
suggested by Rosenthal and Henderson (2003), upon convergence,
the FSC curve is modified as FSC0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FSCðmÞ=ð1þ FSCðmÞÞ

p
to esti-
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mate the resolution of the combined reconstruction. Consequently,
the frequency where the gold-standard FSC curve passes through
0.143 indicates the estimated resolution of the map. Recent in-
sights that take into account that the volume occupied by the par-
ticle is typically only a fraction of the entire reconstructed volume
(Sindelar and Grigorieff, in press) may be considered in future ver-
sions of the program.

2.7. General implementation details

RELION is implemented as a stand-alone program, and its open-
source C++ code is available for download from http://www2.mrc-
lmb.cam.ac.uk/relion. All developments described above have been
implemented in version 1.1. Pieces of code, e.g. for dealing with
symmetry, Euler angle operations and image I/O, were copied
and/or adapted from the open-source packages XMIPP (Sorzano
et al., 2004) and BSOFT (Heymann and Belnap, 2007), and all Euler
angle and symmetry conventions are in accordance with the 3D-
EM standard conventions (Heymann et al., 2005). A graphical inter-
face is provided to facilitate its use by novice users.

Following the strategy employed in BSOFT, all metadata I/O is
through plain text files in the STAR format (Hall, 1991). This format
provides a convenient way to store tables of label-value pairs in a
highly structured manner that is similar to XML but much easier to
read by humans. The crystallographic community makes extensive
use of the STAR format through crystallographic information files
(CIF) (Hall et al., 1991). The structured metadata I/O in RELION
was designed to facilitate its incorporation into umbrella-like
packages that provide a uniform interface to a range of other pro-
grams. Efforts to do so in APPION (Lander et al., 2009) and EMAN2
(Tang et al., 2007) are currently ongoing (personal communication
with Bridget Carragher and Steven Ludtke, respectively).

Despite the above-mentioned algorithmic efforts to speed up
calculations, RELION may still require considerable amounts of
CPU depending on the task at hand. To further reduce computation
times, RELION adopts a hybrid parallelization scheme at two dis-
tinct levels. Distributed-memory parallelization through the mes-
sage passing interface (MPI) is employed to divide the data set
into subsets of images that are processed in parallel. A work-
on-demand implementation, where a master node dispatches
relatively small jobs to slave nodes that request work whenever
they are idle, allows an efficient use of heterogeneous computer
clusters. Also the processing of the random halves of the data for
the gold-standard FSC calculations is handled by MPI, where each
half of the data is sent to a different subset of the slaves. At a lower
level, shared-memory parallelization through POSIX threads is
employed to further divide the work load of the MPI nodes. Each
thread processes a subset of all orientations for each individual im-
age. The distinct advantage of using threads over MPI is that all
threads can access the same computer memory, so that the total
amount of memory in modern multi-core computing nodes may
be used more efficiently. Taken together, the hybrid parallelization
approach provides maximum flexibility: both in terms of scalabil-
ity and memory usage.

3. Experimental procedures

The procedures outlined above were evaluated using simulated
as well as experimental data. First, a simulated density map, or
phantom, was used to assess the accuracy and speed of the projec-
tion and back-projection operations. For this purpose, a set of atomic
coordinates of the 70S ribosome (PDB-IDs 2J00 and 2J01) (Selmer
et al., 2006) was converted to a density map of 128� 128� 128 vox-
els, with a voxel size of 2.8 Å, using the xmipp_convert_pdb2vol pro-
gram (Sorzano et al., 2004). This map was projected in 5000 different
orientations that were taken from a previously reported cryo-EM
study on 70S ribosomes (Scheres et al., 2007a). The resulting projec-
tions were then back-projected in their perfect orientations to gen-
erate a reconstructed density map, and the accuracy of this
projection/reconstruction cycle was assessed by FSC-curves be-
tween this reconstruction and the original phantom.

Second, general refinement behaviour and computational costs
of the MAP optimization approach were tested using an experi-
mental cryo-EM data set of 5168 GroEL particles that is distributed
as part of a workshop on the EMAN2 software package (Tang et al.,
2007). Using standard procedures in XMIPP, see (Scheres, 2010) for
details, all particles were normalized, 115 particles were discarded
after initial sorting, and the remaining 5053 particles were win-
dowed to images of 128 � 128 pixels, with a pixel size of 2.12 Å.
Refinements with these data were performed in symmetry group
D7; a soft spherical mask with a diameter of 205 Å was applied
to the reconstructions at every iteration; and the starting model
was obtained from a 50 Å low-pass filtered GroEL map from a pre-
vious study (Scheres, 2012). Reconstruction quality was assessed
by FSC calculations between the reconstructed maps and a symme-
trized GroEL crystal structure (PDB-ID 1XCK) (Bartolucci et al.,
2005) that was also used to assess GroEL reconstructions in a pre-
vious study (Scheres, 2012). All estimated s2 values in these refine-
ments were multiplied by a constant T ¼ 4. As explained in more
detail in Scheres (2012), values of T in the range of 2–4 typically
yield better maps than those obtained with the original algorithm.

Additional tests to assess alignment accuracies were performed
using simulated data that were designed to be similar to the exper-
imental GroEL data. The symmetrized GroEL crystal structure was
converted to a density map, to which a B-factor of 350 Å2 and an
arbitrary scale factor were applied to yield a phantom with a similar
power spectrum as the reconstruction obtained from the experi-
mental data. This phantom was then projected into 5053 orienta-
tions, which comprised small random perturbations of the optimal
orientations as determined for the experimental particles. For each
simulated particle, identical CTF parameters were used as estimated
for the experimental particles, and independent Gaussian noise was
added in the Fourier domain using the same power spectra as esti-
mated for the experimental data. FSC curves with the original phan-
tom were used to assess the quality of reconstructions from these
images, while the known orientations of all particles allowed the
calculation of histograms of orientational error distributions.

Finally, to further illustrate its general applicability, RELION was
applied to three additional cryo-EM data sets: 50,330 b-galactosidase
particles that were described by Scheres et al. (2012); 5403 hepatitis
B capsids that were selected from re-scanned micrographs that were
previously described by Boettcher et al. (1997); and 3700 recoated
rotavirus particle (RP7) that were described by Chen et al. (2009).
Crystal structures for these complexes are available: PDB-ID 3I3E
for b-galactosidase (Dugdale et al., 2010); PDB-ID 1QGT for hepatitis
B capsid (Wynne et al., 1999); and PDB-ID 1QHD for the rotavirus
VP6 protein (Mathieu et al., 2001). FSC calculations of the recon-
structed maps vs. these crystal structures were used to assess the
quality of the refinement results.

All calculations described in this paper were performed on Dell
M610 computing nodes of eight 2.4 GHz Xeon E5530 cores and
16 Gb of RAM each. Projection and back-projection operations with
the phantom were performed using a single core, while all other
calculations used the hybrid parallelization scheme to launch eight
threads on each of seven nodes, i.e. using 56 cores in parallel.

4. Results and discussion

4.1. Accuracy of the Fourier-space interpolations

The Fourier-space interpolation procedures outlined in Sec-
tion 2.2 and Appendix A involve concessions to theory in order

http://www2.mrc-lmb.cam.ac.uk/relion
http://www2.mrc-lmb.cam.ac.uk/relion
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to obtain a computationally feasible approach. The accuracy of the
resulting algorithms was assessed using a projection/reconstruc-
tion cycle with the ribosome phantom. In a first experiment,
5000 noiseless projections were generated and then back-
projected again using RELION. The resulting reconstruction was
compared with those obtained using two similar projection/recon-
struction procedures in SPIDER (version 20.02) (Shaikh et al.,
2008): one using a Kaiser–Bessel interpolation kernel (commands
PR3Q and BP3F), the other using gridding (Penczek et al., 2004)
(commands PR3G and BP3G), see Fig. 1A and C. All three ap-
proaches give FSC values higher than 0.99 up to the Nyquist
frequency, although the Kaiser–Bessel interpolation kernel in SPI-
DER seems to perform slightly worse than the gridding approaches
in SPIDER and RELION. The experiment was then repeated with
projections in the same 5000 directions to which white Gaussian
noise was added (with SNR = 0.1). In this case, the reconstruction
obtained in RELION was somewhat better than both approaches
in SPIDER (Fig. 1B and D).

Apparently, the interpolation scheme in RELION does not result
in a deterioration of the reconstruction quality, although it is com-
putationally highly efficient. RELION projection calculations took
on average 0.9 ms and back-projections 1.2 ms. Accurate numbers
were not estimated for the SPIDER calculations, as this would re-
quire modification of the source code. Yet, projections were gener-
ated in SPIDER every 50–100 ms, while back-projections took
approximately 70–200 ms.
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4.2. Acceleration of the MAP optimization algorithm

The efficiency of the remaining acceleration approaches was as-
sessed using the cryo-EM dataset of 5053 GroEL particles. An initial
refinement was performed with minimal acceleration. Following a
pre-defined protocol of gradually increasing sampling rates, this
calculation used exhaustive integrations over all rotations, and it
did not use the adaptive expectation–maximization approach.
The third column in Table 1 shows the wall-clock time required
for these calculations. Given the relatively small size of the data
set, the total required time of more than 24 days (while using 56
CPUs in parallel) was deemed excessive. The accelerating
approaches that were outlined in Sections 2.3 and 2.4 were tested
in two additional calculations. First, a similar run with adaptive
expectation maximization was performed. Then, in addition to
using adaptive expectation maximization, local angular searches
were performed during iterations 21–40. For iterations 21–30,
integrations were limited to within 5� from the orientations in
the previous iteration (using a standard deviation of 1.66� for the
Gaussian prior on the Euler angles). For iterations 31–40, orienta-
tional searches were limited to ±2.5� (using a standard deviation
of 0.833�). Columns four and five in Table 1 show the required
wall-clock times for these two runs. The adaptive expectation–
maximization approach yields a speed-up that increases from 2-
fold in the initial iterations to 24-fold in the final ones, while local
angular searches provide an additional 8-fold acceleration during
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ge between C and D.



Table 1
Wall-clock times (in hours) for the given number of iterations in the first column for a
run without acceleration (�/�); a run with adaptive expectation maximization (adap/
�); and a run with both adaptive expectation maximization and local angular
searches (adap/local).

Iter Sampling (�) �/� adap/� adap/local

1–10 7.5 0.8 0.4 ND
11–20 3.8 6.6 0.7 ND
21–30 1.8 56.3 3.1 2.7
31–40 0.9 535 21.6 2.8
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the last 10 iterations. FSC calculations indicated that all runs
yielded a reconstruction that correlated up to 10 Å with the sym-
metrised crystal structure. The overall acceleration of more than
two orders of magnitude between the run without acceleration
and the run using both adaptive expectation maximization and lo-
cal angular searches did not come at the cost of a noticeable dete-
rioration of the reconstruction.

The procedure of gradually increasing sampling rates in itself
represents an algorithmic approach to accelerate the MAP optimi-
zation. High sampling rates lead to accurate approximations of the
continuous integrals in Eqs. (3)–(7), but come at considerable com-
putational costs. However, too coarse angular samplings cannot
represent the continuous integrals accurately, and may limit the
resolution of the reconstruction. To test the efficiency of the proce-
dure of gradually increasing sampling rates, an additional refine-
ment was performed where the angular sampling rate was kept
at a constant 1.8� for 40 iterations (using exhaustive integrations
and adaptive expectation maximization). This run took 97 h of
wall-clock time. Again a reconstruction was obtained that corre-
lated up to 10 Å resolution with the symmetrised crystal structure.
Apparently, using relatively coarse orientational samplings during
the initial stages of refinement also yields a large increase in speed
and does not have a noticable effect on the quality of the final
reconstruction.

4.3. Assessment of angular assignment accuracy

As the correct orientations remain unknown in any reconstruc-
tion from experimental data, the estimation of the angular accu-
racy based on the RF=T criterion was first assessed using the
simulated GroEL data set. Fig. 2A shows some simulated particles
and Fig. 2B their experimental counterparts. RELION estimated
an angular accuracy of 2.9� for the alignment of the simulated par-
ticles against a 10 Å low-pass filtered version of phantom. To eval-
uate the usefulness of this estimation, additional MAP
optimizations were performed using a range of different angular
sampling rates. In each calculation, a single iteration was per-
formed with the filtered phantom map as a reference. The optimal
orientations from these calculations, i.e. those orientations with
the highest Ci/, were compared to the known orientations of the
simulated particles. Fig. 2C shows the distributions of the resulting
angular errors. As expected, the angular errors decrease with
increasingly fine sampling rates from 15� to 1.8�. However, using
angular sampling rates that are even finer only lead to minor fur-
ther improvements, which is confirmed by FSC curves between a
reconstruction that was made from the particles in their optimal
orientations and the known phantom map (Fig. 2D). Using the fin-
est tested angular sampling rate of 0.9�, the fraction of particles
that had angular errors smaller than the estimated value of 2.9�
for the first, second and third Euler angle were, 70%, 96% and
76%, respectively, illustrating the relevance of the estimated
accuracy.

To further assess the relevance of the estimated angular assign-
ment accuracies based on the RF=T criterion, the estimated values
were also compared to experimentally accessible values as
obtained by tilt-pair analysis. For a range of different specimens,
Henderson et al. (2011) aligned pairs of images that were taken
at different tilt-angles in the microscope against a model recon-
struction. Based on the extent to which the two independently as-
signed orientations of each pair were compatible with the
experimentally known tilt-axis transformation, the accuracy with
which the (pairs of) orientations were assigned could be estimated.
These values showed an expected trend of increasing angular
assignment accuracy with increasing molecular weight of the
specimen (grey circles in Fig. 2E). Note that the angular accuracies
plotted are divided by

ffiffiffi
2
p

compared to the values given in Table 1
of Henderson et al. (2011) to take into account that the measure-
ments concerned image pairs instead of individual images. As also
discussed by those authors, the accuracy of the first image may
actually be somewhat better because the second image of the tilt
pair is affected by more radiation damage than the first one. Still,
a very similar trend was observed for the angular assignment
accuracies as estimated based on the RF=T criterion inside RELION
for a different range of specimens (black crosses in Fig. 2E). The good
overall agreement between the estimated values and the experimen-
tally accessible values confirms the relevance of the RF=T criterion.

The SNR considerations that led to Eq. (8) may also provide use-
ful insights into the relative contribution of different frequencies to
the alignment of the individual particles. Based on the RF=T crite-
rion, the accuracy with which the simulated GroEL particles may
be aligned against the perfect phantom model was estimated to
be 2.7�. Fig. 2F shows the average resolution-dependent contribu-
tion to the summation in Eq. (8) for a random subset of 100 parti-
cles and for orientations /T and /F that are 2.7� apart. The signal in
cryo-EM images falls off much faster with resolution than the
noise. Therefore, higher-resolution terms will typically contribute
less than the lower resolution terms to the summation inside the
exponential of Eq. (8), despite the fact that the number of Fourier
components in the 2D images increases quadratically with resolu-
tion. In fact, more than half of the total sum is made up for by com-
ponents up to 15 Å resolution, and components beyond 8 Å
resolution contribute only marginally. The plot in Fig. 2F suggests
that excluding frequencies below 10 Å resolution from the refine-
ment would lead to worse orientational assignments and thus
worse reconstructions, while including frequencies beyond 8 Å
would hardly benefit reconstruction quality at all. To test these
predictions, three additional alignments of the simulated GroEL
particles against the phantom map were performed. In these calcu-
lations, the resolution of the data that were included in the align-
ment was limited to 20 Å, 10 Å and the Nyquist frequency,
respectively. Fig. 2G shows the resulting angular error distributions
for these calculations. As predicted, the angular assignments only
improve slightly upon the inclusion of data in the range between
20 and 10 Å, and virtually no improvement is obtained by includ-
ing even higher frequencies. These results are in excellent agree-
ment with experimental observations that only low-medium
resolution components contribute significantly to the alignment
of individual images (Henderson et al., 2011).

4.4. The prevention of overfitting: ‘‘gold-standard’’ FSCs

As recognized previously, the observation that only the low-
medium resolution components in individual particles have suffi-
ciently high SNRs to contribute significantly to the alignment ex-
plains why overfitting may be prevented without loss of
reconstruction quality using gold-standard FSCs (Scheres et al.,
2012). At these resolutions, for most cryo-EM studies reconstruc-
tions from only half of the data are nearly indistinguishable from
reconstructions from all data. Therefore, orientational assignments
that use half-reconstructions as references are not expected to be
worse than those based on a reconstruction from all data. As long
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alignment was varied between 20 Å (solid black), 10 Å (solid grey) and Nyquist (dashed black).
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as the two independent reconstructions are combined upon con-
vergence, the resolution of this final reconstruction made from
all particles is therefore not expected not be worse than the reso-
lution obtained using a single model in refinement. Moreover,
because overfitting is prevented the gold-standard FSC curve will
be a better indicator of the true resolution of the map.

To assess the use of gold-standard FSCs inside RELION, a run with
the experimental GroEL particles that used Eqs. (9) and (10) was
compared to a similar run using the original MAP algorithm. In both
runs the angular sampling rate was fixed at 1.8� and exhaustive
angular searches were performed using the adaptive expectation–
maximization approach for 40 iterations. The reported resolutions
for both runs at every iteration are shown in Fig. 3. The run based
on gold-standard FSCs converges much faster than the original
MAP approach. In the latter, the power of the reconstruction from
the previous iteration is used to filter the reconstruction in the cur-
rent iteration. This makes the expectation–maximization algorithm
particularly slow to converge. The run using gold-standard FSCs to
estimate signal strength converges faster because alignments based
on the lower frequencies alone also yield correlations at higher fre-
quencies. A reconstruction from all particles at the end of the run
using gold-standard FSCs correlates up to 8.7 Å with the symme-
trized GroEL crystal structure; the reconstruction from the original
MAP approach up to 10 Å. It is also noteworthy that the multiplica-
tion of the estimated s2ðmÞ values by the ad hoc constant T ¼ 4,
which was observed to provide better convergence behaviour of
the original MAP approach (Scheres, 2012), is no longer necessary
in the gold-standard FSC approach.

4.5. 3D auto-refine: a refinement procedure with minimal user
intervention

Based on the results described above, a fully automated proto-
col was implemented for the refinement of structurally homoge-
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neous data sets. The user only selects a relatively coarse initial
orientational sampling, and this sampling rate is automatically
increased during the refinement. For this purpose two convergence
criteria are monitored: the estimated resolution (based on the
gold-standard FSC curve) and the average changes in the optimal
orientation and class assignments for all particles. Once both crite-
ria no longer improve from one iteration to the next, the orienta-
tional sampling rates are increased. The rotational sampling is
increased 2-fold by using the next Healpix grid. The translational
sampling is adjusted to the estimated accuracy of the translational
assignments based on the RF=T criterion. This process is repeated
until the angular sampling employed is finer than the estimated
angular accuracy as estimated using the RF=T criterion. During all
iterations, the adaptive expectation–maximization algorithm is
Table 2
Refinement characteristics for four cryo-EM data sets.

b-Galactosidase gro

Sample characteristics
Size (MDa) 0.45 0.8
Symmetry D2 D7

Microscopy settings
Microscope FEI Polara G2 Jeo
Voltage (kV) 80 30
Defocus range (lm) 1.2–2.7 1.9
Detector Kodak SO163 Ko

Data characteristics
Image size (pixel2) 100� 100 12
Pixel size (Å) 2.93 2.1
Number of particles 50,330 50

RELION parameters
Particle mask diameter (Å) 200 20
Initial low-pass filter (Å) 60 60
Initial angular sampling (�) 7.5 7.5
Local searches from (�) 1.8 1.8
Initial offset range (pixel) 6 6
Initial offset step (pixel) 1 1

RELION results
Wall-clock time (h) 13.6 2.0
Reported resolution (Å) 9.8 8.2
Resolution vs. X-ray (Å) 10.1 8.4

Previous results
Refinement program XMIPPc EM
Reported resolution (Å) 13.9 8.4
Resolution vs. X-ray (Å) 12.7 8.7

a The original rotavirus particles were downscaled by a factor of 2 to reduce memory
b After 13-fold non-icosahedral symmetry averaging, and for a masked region of the m
c The results obtained using a gold-standard FSC version of the XMIPP projection mat
d Results from the EMAN2 tutorial (version 2011) were downloaded from http://blake
e FREALIGN results were downloaded from http://emlab.rose2.brandeis.edu/rota_reco
used, and from a user-defined angular sampling rate onwards, local
angular searches are performed (within a search range of ±3 times
the sampling rate). Upon convergence, a final iteration is per-
formed where the two independent halves of the data are com-
bined in a single reconstruction.

Apart from providing a starting model and a general description
of the data, there are few parameters that need to be set by the
user. The user decides on the frequency of an initial low-pass filter
of the starting model, the user provides the diameter for a soft
spherical mask to be applied to the reconstructions at every itera-
tion, and the user sets the initial orientational sampling rates and
the angular sampling rate from which to use local angular
searches. The following rules of thumb may be of help to the inex-
perienced user. To reduce model bias, the filter on the starting
model should be ‘‘as low-resolution as possible’’. In most cases, a
too low-resolution filter will result in a featureless blob that can
no longer be refined. The recommended filter is somewhat higher
than that. The diameter of the spherical mask should be choosen
such that most of the solvent area is excluded, but care should
be taken not to exclude any density of the particle. If the particle
is far from spherical a user-defined mask may be provided (op-
tional). This should preferably be a soft mask, with a continuous
change from the solvent area (0-values in the mask) to the particle
area (1-values in the mask). The optimal initial angular sampling
rate and the angular sampling rate from which to use local angular
searches mainly affects computational costs. Useful values for the
initial angular sampling rate are 3:7� for icosahedral viruses, and
7:5� for lower-symmetry particles. The initial search range and
step size of the translational sampling depends on the image and
pixel size and on the accuracy with which the particles have been
selected. Large values for the search range, combined with a small
step size will considerably slow down the initial iterations. Often,
EL Hepatitis B Rotavirus
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searching ±6 pixels with a step size of 1 pixel is sufficient. Note that
the centre of the translational searches for each particle is updated
to the optimal translation in the previous iteration. Therefore, dur-
ing more than one iteration the particles can still move over more
pixels than the indicated search range.
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Fig.4. Results obtained with the 3D auto-refine procedure for four cryo-EM data sets: (A)
left are shown the resolution-dependent contributions to the orientability, i.e. to the sum
reconstructed density (transparent yellow) with the corresponding fitted crystal structu
�1500, �750, �850 and �275 Å2 for the b-galactosidase, GroEL, hepatitis B capsid, and
To illustrate its versatility, the 3D auto-refine procedure was
applied to four cryo-EM data sets. Table 2 gives an overview of
the data characteristics, the parameters used, and the resolutions
obtained. Fig. 4 shows the resolution-dependent contributions to
the orientability of the individual particles and representative
b-galactosidase, (B) GroEL, (C) hepatitis B capsid, and (D) recoated rotavirus. On the
inside the exponential in Eq. (8). On the right are shown representative pieces of

res inside (red). All maps were sharpened prior to visualization, using a B-factor of
recoated rotavirus reconstructions, respectively.



S.H.W. Scheres / Journal of Structural Biology 180 (2012) 519–530 529
parts of the reconstructed density maps. Objective indications of
reconstruction quality were obtained by FSC calculations against
available crystal structures. The resolution where these FSC curves
dropped below 0.5 is reported in Table 2. Comparison of these
values for the reconstruction obtained by RELION and previously
reported reconstructions from the same data sets indicates that
the elimination of user intervention from the 3D auto-refine proce-
dure did not lead to a deterioration of the results. On the contrary,
RELION yields reconstructions that are as good or better than those
obtained by a variety of alternative refinement programs. The
high-quality reconstructions come at a readily acceptable compu-
tational cost, the more so because the program does not need to
be run multiple times in order to fine-tune ad hoc parameters.

5. Conclusions

Implementation of the procedures described here in the RELION
program has resulted in a refinement tool that delivers state-of-
the-art reconstructions at acceptable computational costs. The use
of gold-standard FSCs to estimate resolution-dependent SNRs
avoids overfitting and yields realistic resolution estimates (Scheres
et al., 2012). Still, it is important to realize that RELION employs a
local optimization algorithm (as most refinement programs do),
which makes the outcome of the approach dependent on the quality
of the starting model. Therefore, while the development of robust
methods to generate ab initio starting models remains an active area
of research, the development of better structure validation tools
continues to be extremely relevant (Henderson et al., 2012).

In general, the Bayesian approach provides a statistical frame-
work for the entire cryo-EM structure determination workflow. This
framework was previously shown to provide new insights into the
optimal filtering of 3D reconstructions (Scheres, 2012), and has
now also been shown to be useful to predict the accuracy of align-
ment of individual particles and the relative contribution of the dif-
ferent frequencies therein. However, perhaps the greatest asset of
the Bayesian approach is that most of its parameters are learned from
the data themselves. Thereby, the careful tuning of ad hoc parameters
by an expert user is avoided, which facilitates automation and
increases the objectivity of cryo-EM structure determination.
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Appendix A. An iterative gridding reconstruction algorithm

A weighting function W (with values Wl for all l ¼ 1; . . . ; L) for
the non-uniformly sampled transform in Eq. (3) is estimated in
an iterative manner. Modifying Pipe and Menon (1999), the first
iteration m ¼ 1 starts with:

W ðm¼1Þ ¼ S
ðXSÞ �W

; ðA:1Þ

where S has values Sl ¼ 1 for all l ¼ 1; . . . ; L grid points, � denotes
convolution (evaluated at all grid points l), and the division is inter-
preted as a point-by-point division at all grid points. W is a suitable
interpolation function with a limited support in Fourier space. For
this purpose, RELION uses a modified Kaiser–bessel function (or
blob) of order m ¼ 0, radius r ¼ 1:9 and a ¼ 15. The term X, with
Xl for all l ¼ 1; . . . ; L grid points, is not present in Pipe and Menon
(1999) and is set equal to the values in the denominator of Eq.
(3), i.e.

Xl ¼
XN

i¼1

Z
/
CðnÞik/

XJ

j¼1

P/T

lj

CTF2
ij

r2
ij
ðnÞ d/þ 1

s2
kl
ðnÞ for each l: ðA:2Þ

The reason for this additional term lies in the observation that,
because all 2D transforms Xi were brought onto the same oversam-
pled Cartesian grid, rather than processing each input data point
separately (as in Pipe and Menon, 1999) it is much more efficient
to evaluate the weighted sums over all images (in all orientations)
at every grid point l. Also, because W is evaluated on a regular
Cartesian grid, the convolution operation may be evaluated effi-
ciently through Fourier transforms. It should however be noted
that the linear interpolation that is used to bring all Xi onto the
oversampled 3D grid represents an arbitrary departure from the
procedure proposed by Pipe and Menon, where speed consider-
ations outweighted strict adherence to theory.

Again following Pipe and Menon, the weight is then iteratively
refined using:

W ðmþ1Þ ¼ W ðmÞ

ðXW ðmÞÞ �W
: ðA:3Þ

As pointed out by these authors as well, if during the initial itera-
tions W ðmÞ

l is regionally too large, e.g. because a preferred orienta-
tion has lead to a relatively densely sampled area in the
transform, then the denominator in Eq. (A.3) will be greater than
unity, reducing the next estimate W ðmþ1Þ

l . Conversely, when W ðmÞ
l

is regionally too small, the next estimate will be increased. After
several iterations (in RELION by default 10 iterations are per-
formed), the values of ðXW ðmÞÞ �W are typically close to 1 for all
l, so that W ðmþ1Þ �W ðmÞ. Multiplication of the numerator of Eq. (3)
with Wl for all l, followed by an inverse Fourier transform then
yields a real-space map, which is windowed to its original size
and divided by the inverse transform of the interpolation kernel
in Fourier space.
References

Bammes, B.E., Rochat, R.H., Jakana, J., Chen, D.-H., Chiu, W., 2012. Direct electron
detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist
frequency. Journal of Structural Biology 177 (3), 589–601.

Bartolucci, C., Lamba, D., Grazulis, S., Manakova, E., Heumann, H., 2005. Crystal
structure of wild-type chaperonin GroEL. Journal of Molecular Biology 354 (4),
940–951.

Barton, B., Rhinow, D., Walter, A., Schroeder, R., Benner, G., et al., 2011. In-focus
electron microscopy of frozen-hydrated biological samples with a Boersch
phase plate. Ultramicroscopy 111 (12), 1696–1705.

Brilot, A.F., Chen, J.Z., Cheng, A., Pan, J., Harrison, S.C., Potter, C.S., Carragher, B.,
Henderson, R., Grigorieff, N., 2012. Beam-induced motion of vitrified specimen
on holey carbon film. Journal of Structural Biology 177 (3), 630–637.

Boettcher, B., Wynne, S.A., Crowther, R.A., 1997. Determination of the fold of the
core protein of hepatitis B virus by electron cryomicroscopy. Nature 386 (6620),
88–91.

Chen, J.Z., Settembre, E.C., Aoki, S.T., Zhang, X., Bellamy, A.R., et al., 2009. Molecular
interactions in rotavirus assembly and uncoating seen by high-resolution cryo-
EM. Proceedings of the National Academy of Sciences of the United States of
America 106 (26), 10644–10648.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum-likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B 39 (1), 1–38.

Dugdale, M.L., Dymianiw, D.L., Minhas, B.K., D’Angelo, I., Huber, R.E., 2010. Role of
Met-542 as a guide for the conformational changes of Phe-601 that occur
during the reaction of b-galactosidase (Escherichia coli). Biochemistry and Cell
Biology 88 (5), 861–869.



530 S.H.W. Scheres / Journal of Structural Biology 180 (2012) 519–530
Fischer, N., Konevega, A.L., Wintermeyer, W., Rodnina, M.V., Stark, H., 2010.
Ribosome dynamics and tRNA movement by time-resolved electron
cryomicroscopy. Nature 466 (7304), 329–333.

Fukuda, Y., Nagayama, K., 2012. Zernike phase contrast cryo-electron tomography
of whole mounted frozen cells. Journal of Structural Biology 177 (2), 484–489.

Gorski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., et al., 2005. HEALPix
– a framework for high resolution discretization, and fast analysis of data
distributed on the sphere. The Astrophysical Journal 622, 759–771.

Hall, S.R., 1991. The STAR file: a new format for electronic data transfer and
archiving. Journal of Chemical Information and Computer Sciences 31 (2), 326–
333.

Hall, S.R., Allen, F.H., Brown, I.D., 1991. The crystallographic information file (CIF): a
new standard archive file for crystallography. Acta Crystallographica Section A
Foundations of Crystallography 47 (6), 655–685.

Henderson, R., Chen, S., Chen, J.Z., Grigorieff, N., Passmore, L.A., et al., 2011. Tilt-pair
analysis of images from a range of different specimens in single-particle
electron cryomicroscopy. Journal of Molecular Biology 413 (5), 1028–1046.

Henderson, R., Sali, A., Baker, M.L., Carragher, B., Devkota, B., et al., 2012. Outcome of
the first electron microscopy validation task force meeting. Structure (London,
England: 1993) 20 (2), 205–214.

Heymann, J.B., Belnap, D.M., 2007. BSOFT: image processing and molecular
modeling for electron microscopy. Journal of Structural Biology 157 (1), 3–18.

Heymann, J.B., Chagoyen, M., Belnap, D.M., 2005. Common conventions for
interchange and archiving of three-dimensional electron microscopy
information in structural biology. Journal of Structural Biology 151 (2), 196–
207.

Lander, G.C., Estrin, E., Matyskiela, M.E., Bashore, C., Nogales, E., et al., 2012.
Complete subunit architecture of the proteasome regulatory particle. Nature
482 (7384), 186–191.

Lander, G.C., Stagg, S.M., Voss, N.R., Cheng, A., Fellmann, D., et al., 2009. APPION: an
integrated, database-driven pipeline to facilitate EM image processing. Journal
of Structural Biology 166 (1), 95–102.

Lau, W.C.Y., Rubinstein, J.L., 2012. Subnanometre-resolution structure of the intact
Thermus thermophilus H+-driven ATP synthase. Nature 481 (7380), 214–218.

Liu, H., Jin, L., Koh, S.B.S., Atanasov, I., Schein, S., et al., 2010. Atomic structure of
human adenovirus by cryo-EM reveals interactions among protein networks.
Science (New York, NY) 329 (5995), 1038–1043.

Ludtke, S.J., Nason, L., Tu, H., Peng, L., Chiu, W., 2003. Object oriented database and
electronic notebook for transmission electron microscopy. Microscopy and
Microanalysis 9 (06), 556–565.

Matej, S., Lewitt, R.M., 2001. 3D-FRP: direct fourier reconstruction with fourier
reprojection for fully 3-d PET. IEEE Transactions on Nuclear Science 48 (4),
1378–1385.

Mathieu, M., Petitpas, I., Navaza, J., Lepault, J., Kohli, E., et al., 2001. Atomic structure
of the major capsid protein of rotavirus: implications for the architecture of the
virion. The EMBO Journal 20 (7), 1485–1497.

Milazzo, A.-C., Cheng, A., Moeller, A., Lyumkis, D., Jacovetty, E., et al., 2011. Initial
evaluation of a direct detection device detector for single particle cryo-electron
microscopy. Journal of Structural Biology 176 (3), 404–408.

Nagayama, K., 2011. Another 60 years in electron microscopy: development of
phase-plate electron microscopy and biological applications. Journal of Electron
Microscopy 60 (Suppl 1), S43–62.

Penczek, P.A., Renka, R., Schomberg, H., 2004. Gridding-based direct fourier
inversion of the three-dimensional ray transform. Journal of the Optical
Society of America. A, Optics, Image Science, and Vision 21 (4), 499–509.
Pipe, J.G., Menon, P., 1999. Sampling density compensation in MRI: rationale and an
iterative numerical solution. Magnetic Resonance in Medicine: Official Journal
of the Society of Magnetic Resonance in Medicine/Society of Magnetic
Resonance in Medicine 41 (1), 179–186.

Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation,
absolute hand, and contrast loss in single-particle electron cryomicroscopy.
Journal of Molecular Biology 333 (4), 721–745.

Scheres, S.H.W., 2010. Classification of structural heterogeneity by maximum-
likelihood methods. In: Cryo-EM, Part B: 3-D Reconstruction. Methods in
Enzymology, vol. 482. Academic Press, pp. 295–320.

Scheres, S.H.W., 2012. A bayesian view on cryo-EM structure determination. Journal
of Molecular Biology 415 (2), 406–418.

Scheres, S.H.W., Chen, S., 2012. Prevention of overfitting in cryo-EM structure
determination. Nature Methods 9, 853–854.

Scheres, S.H.W., Gao, H., Valle, M., Herman, G.T., Eggermont, P.P.B., et al., 2007a.
Disentangling conformational states of macromolecules in 3D-EM through
likelihood optimization. Nature Methods 4 (1), 27–29.

Scheres, S.H.W., Nunez-Ramirez, R., Gomez-Llorente, Y., San Martin, C., Eggermont,
P.P.B., et al., 2007b. Modeling experimental image formation for likelihood-
based classification of electron microscopy data. Structure 15 (10), 1167–1177.

Scheres, S.H.W., Valle, M., Carazo, J.M., 2005. Fast maximum-likelihood refinement
of electron microscopy images. Bioinformatics 21 (Suppl. 2), ii243–ii244.

Selmer, M., Dunham, C.M., Murphy, F.V., Weixlbaumer, A., Petry, S., et al., 2006.
Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313
(5795), 1935–1942.

Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., et al., 2008. SPIDER image
processing for single-particle reconstruction of biological macromolecules from
electron micrographs. Nature Protocols 3 (12), 1941–1974.

Shrum, D.C., Woodruff, B.W., Stagg, S.M., in press. Creating an infrastructure for
high-throughput high-resolution cryogenic electron microscopy. Journal of
Structural Biology. http://dx.doi.org/10.1016/j.jsb.2012.07.009.

Sindelar, C.V., Grigorieff, N., in press. Optimal noise reduction in 3D reconstructions
of single particles using a volume-normalized filter. Journal of Structural
Biology. http://dx.doi.org/10.1016/j.jsb.2012.05.005.

Sorzano, C.O.S., Marabini, R., Velazquez-Muriel, J., Bilbao-Castro, J.R., Scheres,
S.H.W., et al., 2004. XMIPP: a new generation of an open-source image
processing package for electron microscopy. Journal of Structural Biology 148
(2), 194–204.

Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., et al., 2005. Automated
molecular microscopy: the new Leginon system. Journal of Structural Biology
151 (1), 41–60.

Tagare, H.D., Barthel, A., Sigworth, F.J., 2010. An adaptive expectation–maximization
algorithm with GPU implementation for electron cryomicroscopy. Journal of
Structural Biology 171 (3), 256–265.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., et al., 2007. EMAN2: an
extensible image processing suite for electron microscopy. Journal of Structural
Biology 157 (1), 38–46.

Wolf, M., Garcea, R.L., Grigorieff, N., Harrison, S.C., 2010. Subunit interactions in
bovine papillomavirus. Proceedings of the National Academy of Sciences of the
United States of America 107 (14), 6298–6303.

Wynne, S.A., Crowther, R.A., Leslie, A.G., 1999. The crystal structure of the human
hepatitis B virus capsid. Molecular Cell 3 (6), 771–780.

Yang, C., Ji, G., Liu, H., Zhang, K., Liu, G., et al., 2012. Cryo-EM structure of a
transcribing cypovirus. Proceedings of the National Academy of Sciences of the
United States of America 109 (16), 6118–6123.

http://dx.doi.org/10.1016/j.jsb.2012.07.009
http://dx.doi.org/10.1016/j.jsb.2012.05.005

	RELION: Implementation of a Bayesian approach to cryo-EM  structure determination
	1 Introduction
	2 Approach
	2.1 Theoretical background
	2.2 Increasing computational speed: fast Fourier-space interpolation
	2.3 Increasing computational speed: adaptive expectation–maximization
	2.4 Increasing computational speed: local orientational searches
	2.5 Assessing alignment accuracy based on SNR considerations
	2.6 Preventing overfitting: “gold-standard” FSC calculations
	2.7 General implementation details

	3 Experimental procedures
	4 Results and discussion
	4.1 Accuracy of the Fourier-space interpolations
	4.2 Acceleration of the MAP optimization algorithm
	4.3 Assessment of angular assignment accuracy
	4.4 The prevention of overfitting: “gold-standard” FSCs
	4.5 3D auto-refine: a refinement procedure with minimal user intervention

	5 Conclusions
	Acknowledgments
	Appendix A An iterative gridding reconstruction algorithm
	References


