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Abstract

This chapter describes algorithmic advances in the RELION software, and how these are
used in high-resolution cryo-electron microscopy (cryo-EM) structure determination.
Since the presence of projections of different three-dimensional structures in the
dataset probably represents the biggest challenge in cryo-EM data processing, special
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emphasis is placed on how to deal with structurally heterogeneous datasets. As such,
this chapter aims to be of practical help to those who wish to use RELION in their cryo-
EM structure determination efforts.

1. INTRODUCTION

Over the past two decades, statistical methods have become increas-

ingly popular for the processing of cryo-electron microscopy (cryo-EM)

images. In 2010, we wrote a review in this same series of Methods in Enzy-

mology about a class of methods that are based on the optimization of a like-

lihood function (Sigworth, Doerschuk, Carazo, & Scheres, 2010). In that

review, we explained how the averaging of two-dimensional (2D) projec-

tion images, or similarly their reconstruction into a three-dimensional (3D)

map, can be considered as an incomplete data problem. The incompleteness

of the data lies in the fact that the relative orientations of the 2D projection

images are unknown, since the individual macromolecular complexes adopt

random orientations on the experimental support. The way in which these

unknown, or hidden, parameters are treated constitutes the main difference

between the maximum-likelihood approach and alternative, least-squares

methods that had dominated the field until then. In both refinement

approaches one iteratively compares images from one or more 2D or 3D

references in many different orientations with each experimental particle

image, and references for the next iteration are calculated from averages over

the experimental particles. In the least-squares approach one calculates a

single, best orientation and class for each particle based on the squared

difference between the reference and the particle, or the closely related

cross-correlation coefficient. Each experimental particle then contributes

only in its best orientation and class to the average that will form the refer-

ence for the next iteration. In the maximum-likelihood approach one

employs a statistical noise model to calculate posterior probabilities for all

possible orientations and classes, and each particle contributes to all

references and in all orientations, but these are weighted according to the

posterior probabilities. This treatment of the hidden parameters is called

marginalization, and it results in a smearing out of each particle over multiple

orientations and classes if the noise in the data is too strong to uniquely iden-

tify their correct assignment.

Because the statistical noise models are typically based on Gaussian dis-

tributions, the maximum-likelihood approach is closely related to the
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least-squares approach. In fact, in the absence of any noise in the data it

becomes straightforward to identify the best orientation and class, and the

two approaches become identical (Sigworth, 1998). However, because of

the high noise levels in cryo-EM images, the two approaches typically

behave rather differently on experimental data. These differences are most

important during the initial iterations of the optimization, when low-

resolution references contain too little information to unambiguously assign

orientations and classes. Upon convergence, when high-resolution refer-

ences provide much more information, the posterior probability distribu-

tions often approach delta functions, corroborating the selection of only

the single most likely assignment for each particle.

By 2010, maximum-likelihood approaches had been used in a number

of experimental studies, mostly for 2D and 3D classification tasks (Scheres,

2010). Since then, the use of likelihood-based approaches in cryo-EM has

increased steeply. Existing implementations of 2D and 3D maximum-

likelihood classification in the XMIPP package (Scheres, Nunez-

Ramirez, Sorzano, Carazo, & Marabini, 2008) have remained in use, while

Niko Grigorieff also implemented a new classification approach in

FREALIGN that marginalizes over the class assignments but still treats

the orientational assignments in a least-squares manner (Lyumkis, Brilot,

Theobald, & Grigorieff, 2013). Probably the steepest increase in the use

of likelihood-based methods has been due to the introduction of a new,

empirical Bayesian approach (Scheres, 2012a) that was implemented in

the RELION program (Scheres, 2012b). This approach differs from previ-

ously available likelihood optimization approaches in the introduction of a

regularization term to the likelihood function. The resulting regularized

likelihood optimization algorithm has proven useful for both high-

resolution reconstruction as well as 2D or 3D classification in a wide range

of experimental studies (Bai, McMullan, & Scheres, 2015).

This chapter reviews the algorithmic concepts that were implemented in

RELION and that are new compared to the approaches existing in 2010. It

also describes how this software may be used in high-resolution cryo-EM

structure determination. One of the major challenges in many projects is

the presence of multiple, different 3D structures in the data. Many macro-

molecules adopt a range of different conformations as an intrinsic part of

their functioning, and many samples are not purified to absolute homoge-

neity. If left untreated, the presence of structural heterogeneity in the data

will lead to blurred regions in the maps and possibly to incorrect interpre-

tations. Because many different approaches to deal with structural
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heterogeneity exist, this probably represents the most challenging aspect of

image processing in RELION. Therefore, this chapter is most detailed in its

description of how to deal with structural heterogeneity. As such, it is also

aimed as a useful resource for those who wish to use RELION in their cryo-

EM structure determination efforts.

2. NEW ALGORITHMIC CONCEPTS

2.1 Regularization: The Empirical Bayesian Approach
The main algorithmic advance in RELION is the introduction of a regular-

ization term to the likelihood target function. Previously available

approaches optimized an unregularized likelihood function, which expresses

the agreement between the experimental data and the reconstruction, while

marginalizing over the hidden parameters. The problem with the

unregularized target is that cryo-EM 3D reconstruction is severely ill-posed,

ie, there are many possible noisy reconstructions that fit the data equally

well. In order to define a unique solution one needs to introduce additional

information, which is known as regularization. The key question then

becomes, what information is available about the reconstruction in the

absence of experimental data? A commonly employed approach to similar

questions in machine learning is known as Tikhonov regularization, where

one restrains the square of the Euclidean (or L2) norm of the solution

(Tikhonov, 1943).

By describing both the signal and the noise components of the data using

Gaussian distributions, Tikhonov regularization can also be understood

from a Bayesian perspective. In this framework, the belief that the L2-norm

of the reconstruction is limited is expressed as a prior on the solution. Opti-

mization of the posterior distribution, which is proportional to the multipli-

cation of the prior with the original likelihood function, is called maximum-

a-posteriori (MAP) optimization and is mathematically equivalent to

Tikhonov regularization. Whereas in standard Bayesian methods the prior

is fixed before any data are observed, inside RELION parameters of the

prior are estimated from the data themselves. This type of algorithm is

referred to as an empirical Bayesian approach.

Both the likelihood and the prior are expressed in the Fourier domain,

where all signal and noise components are assumed to be independent. In the

likelihood function, the assumption of independent Gaussian noise in the

Fourier domain is identical to a previously introduced, unregularized likelihood

approach in the Fourier domain (Scheres, Nunez-Ramirez, et al., 2007).
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Modeling the power of the noise as a function of spatial frequency in the

Fourier domain allows for the description of nonwhite experimental noise

and effectively results in a χ2-weighting of the different spatial frequencies in
alignment. In addition, the Fourier domain formulation permits a conve-

nient description of the effects of microscope optics and defocusing (by

the so-called contrast transfer function, or CTF). In the prior, the power

of the Fourier components of the reconstruction is also restrained as a func-

tion of spatial frequency. Thereby, the prior basically acts as a Fourier filter

that imposes smoothness on the reconstruction in real space.

In fact, optimization of the regularized likelihood target by the standard

expectation-maximization algorithm (Dempster, Laird, & Rubin, 1977)

results in an update formula for the reconstruction that shows strong simi-

larities with previously introduced Wiener filters (Penczek, 2010a). Yet,

while in 2010 it was still far from obvious how the Wiener filter for 3D

reconstruction could be implemented to have its intended meaning

(Penczek, 2010b), the empirical Bayesian perspective allowed an elegant

and straightforward derivation of the correct implementation of the Wiener

filter for 3D reconstruction. This filter depends on estimates for the power of

both the signal and the noise as a function of spatial frequency. By constantly

re-estimating these powers from the data themselves, RELION effectively

calculates the best possible filter, in the sense that it yields the least noisy

reconstruction, at every iteration of the optimization process.

Because optimal weights for the alignment and reconstruction are esti-

mated without user intervention, the regularized likelihood optimization

algorithm is intrinsically easy-to-use in the sense that is does not rely on

an expert user to tune many critical parameters. This makes RELION suit-

able for automation and has likely contributed to its rapid uptake in the field.

2.2 Prevention of Overfitting: The Gold-Standard Approach
to Refinement

Although the constantly updated Wiener filter explicitly dampens high-

frequency components in the reconstruction, overfitting of the data is not

entirely obviated. The reason for this lies in the empirical nature of the

Bayesian approach. At every iteration, the widths of the Gaussians in the

prior are estimated from the power of the reconstruction itself. Therefore,

once one over-estimates the power of the true signal due to an inadvertent

build-up of a small amount of noise in the reconstruction, one will allow

even more noise in the next iteration. This can lead to overfitting, where

noise in the model iteratively builds up.
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By 2010, overfitting and over-estimation of resolution were still com-

mon problems in many cryo-EM structure determination projects, and this

was recognized by a community-driven task-force for the validation of cryo-

EM structures (Henderson et al., 2012). One of their recommendations was

to prevent overfitting by a so-called gold-standard approach to refinement.

In this approach one splits the data into two halves and one refines indepen-

dent reconstructions against each half-set. The Fourier shell correlation

(FSC) between the two independent reconstructions then yields a reliable

resolution estimate, so that the iterative build-up of noise can be prevented.

The original approach to estimate resolution from FSC curves was always

intended to be used with two independently refined reconstructions

(Harauz & van Heel, 1986). Nevertheless, common practices in the field

had evolved toward the refinement of a single reconstruction, where the

resulting angles would be used to make two (no longer independent) recon-

structions from random half-sets at every iteration. The apparent rationale

for this was that a reconstruction from all of the data would provide a better

reference for alignment than the noisier reconstructions from only half

of the data. However, evidence that this reasoning does not necessarily

hold for cryo-EM refinements was obtained from tilt-pair experiments

(Henderson et al., 2011). These experiments showed that alignments are

dominated by the lower spatial frequencies, which are almost indistinguish-

able between reconstructions from all or half of the data. Further evidence

came from a comparison of the two refinement approaches on simulated

data and on experimental datasets for which a high-resolution crystal struc-

ture was available. Although the gold-standard approach gave nominally

lower-resolution estimates, the resulting maps were actually better than

when only a single reconstruction was refined (Scheres & Chen, 2012).

Moreover, the previously introduced FSC¼0.143 threshold at which to

interpret the resolution of the reconstruction (Rosenthal & Henderson,

2003) had been deemed as too optimistic when using the suboptimal refine-

ment approach, and a more conservative FSC¼0.5 threshold had become

the norm. The new experiments illustrated that the problem lies in the

inflated FSC curves from the suboptimal refinement approach, and that

the FSC¼0.143 threshold performs well when two independent recon-

structions are used (Scheres & Chen, 2012).

These results prompted the implementation of a gold-standard refine-

ment approach in RELION. In this implementation, the iterative build-

up of noise is avoided by estimating the widths of the Gaussian priors from

the FSC curve between two independently refined reconstructions.
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Combined with a new approach to estimate the accuracy of alignment from

the estimated signal-to-noise ratios in the data, this led to the implementa-

tion of “3D auto-refinement.” In this approach, the estimated angular accu-

racies are used to automatically increase angular sampling rates during the

refinement up to the point where the noise in the data prevents one from

distinguishing smaller angular differences. This procedure allows the calcu-

lation of high-resolution reconstructions from structurally homogeneous

datasets without intermediate user intervention (Scheres, 2012b).

2.3 Getting Clean, High-Resolution Maps: The Postprocessing
Approach

In order to strictly prevent overfitting, the two independently refined recon-

structions are not masked when calculating the FSC curves inside 3D auto-

refinement. This leads to an underestimation of the true resolution of the

reconstructed signal during refinement because the signal is restricted to a

central region of the map and the surrounding solvent region merely con-

tributes noise. Because orientational and class assignments are predominantly

driven by the lower frequency content of the images, they are usually not

noticeably affected by this underestimation of resolution. However, upon

convergence the highest possible amount of information needs to be

extracted from the reconstruction.

The noise in the solvent region may be removed by masking. Masking is

a multiplication operation with a 3D map (the mask) that has values in the

range of zero outside a region of interest to one inside the region. By mas-

king out the solvent region from the two half-reconstructions, the noise gets

reduced and the FSCs will increase. However, besides this beneficial effect

of solvent removal, FSC values may also increase due to an undesirable con-

volution effect of masking. Multiplication with a mask in real-space corre-

sponds to a convolution with the Fourier transform of the mask in the

Fourier domain. A mixing of the stronger and better-correlating, low-

frequency Fourier-components with the weaker and less-correlating, high-

frequency components will cause an increase in FSCs that does not reflect

the true signal-to-noise ratio in the maps. The more detailed features the

mask has, the stronger this convolution effect is. Also this problem was rec-

ognized by the EM validation task-force (Henderson et al., 2012).

Adaptation of a method that was originally devised to estimate the

amount of overfitting in refinement provided a solution to correct FSC cur-

ves for the convolution effects of masking (Chen et al., 2013). In this

approach, the phases of Fourier components of the two half-reconstructions
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with spatial frequencies higher than a given cutoff are randomized. The cut-

off for phase-randomization is chosen to be considerably lower than the res-

olution of the reconstructions without masking away the solvent. Then, a

solvent mask is applied to the two phase-randomized half-reconstructions.

In the absence of convolution effects, the resulting FSC curves should be

zero beyond the phase-randomization cutoff. Therefore, any nonzero cor-

relations are due to convolution effects and one can correct the FSC curve

between the twomasked half-reconstructions without phase randomization.

The corrected FSC curve reflects the increase in resolution caused by

removing the solvent noise, without being affected by mask convolution

effects.

The phase-randomization approach to correct FSC curves was

implemented in the postprocessing approach of RELION, where it was

combined with a previously proposed method to sharpen the reconstruction

(Rosenthal & Henderson, 2003). This is needed because high-frequency

components in the reconstruction are dampened in the image formation

process itself, in the detection process and in the image processing. This fall-

off is often modeled by a Gaussian using a B-factor, in analogy to the tem-

perature factor in X-ray crystallography. Application of a negative B-factor

leads to sharpening of the map. The B-factor value may be estimated auto-

matically for reconstructions that extend beyond 10 Å, or may be set by the

user for lower-resolution reconstructions. Multiplication of the sharpened

map with the corrected FSC curve typically leads to clean reconstructions

with excellent high-resolution details.

2.4 Beam-Induced Motion Correction and Radiation-Damage
Weighting: The Movie-Processing Approach

With the advent of direct-electron detectors in 2012/13, the possibility

arose to collect movies during the exposure of the sample to the electron

beam. This allowed for two improvements that were previously inacces-

sible: beam-induced motion correction and radiation-damage weighting.

When the electrons hit the sample, inelastically scattered electrons deposit

energy and chemical bonds in the sample are broken. The exact mecha-

nisms of what happens are unknown, but one observation is that the

sample starts to move upon exposure to the electron beam (see chapter

“Specimen Behavior in the Electron Beam” by Glaeser). This beam-

induced motion causes a blurring in the images that can be corrected

by movie-processing, since each of the movie frames contains a sharper

snapshot of the moving objects. Grigorieff and coworkers were the first
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to illustrate the potential of beam-induced motion correction for large

rotavirus particles (Brilot et al., 2012; Campbell et al., 2012).

Correcting for beam-induced motions of smaller complexes is more dif-

ficult, since the movie frames contain only a fraction of the total electron

dose each and are thus extremely noisy (see chapter “Processing of

Cryo-EM Movie Data” by Rubinstein). Still, implementation of a movie-

refinement approach, where one marginalizes over the orientations of

running averages of multiple movie frames led to much improved maps.

Using this approach, reconstruction of only thirty thousand ribosome

particles led to a map in which side chain densities were clearly visible

(Bai, Fernandez, McMullan, & Scheres, 2013). For even smaller particles,

ie, withmolecular weights less than 1 MDa, the running averages of multiple

movie frames still contain too much noise to reliably follow beam-induced

motions for individual particles. Therefore, the movie-processing approach

was adapted based on the observation that neighboring particles often move

in similar directions (despite the fact that particles further away on the same

micrograph may move in very different directions). By fitting straight lines

through the most likely translations from the original movie-processing

approach, and by considering groups of neighboring particles in these fits,

the high noise levels in the estimated movement tracks could be sufficiently

reduced to allow beam-induced motion correction also for smaller com-

plexes (Scheres, 2014).

The approach to simultaneously fit beam-induced motions for groups of

neighboring particles was combined with a novel way of handling radiation-

damage weighting. Radiation damage starts with the breakage of chemical

bonds in the sample, which will rapidly destroy the high-resolution content

of the images. Subsequently, secondary structure elements and protein

domains are unfolded, and eventually the entire macromolecular complex

will be destroyed. Consequently, low-resolution information in the images

will persist longer than the high-resolution information. Tomodel the dose-

and resolution-dependent effects of radiation damage on the images, the

calculation of a B-factor was proposed for each movie frame. In the resulting

approach, the movie-frames of each particle are aligned according to the

fitted motion tracks, and single-frame reconstructions are used to estimate

a B-factor for each movie frame. Then, the aligned movie frames of each

particle are averaged with frequency-dependent weights according to their

relative B-factors. By weighting the different spatial frequencies in each

movie frame differently, the useful information from each movie frame is

retained. For example, whereas later movie frames may hardly contain

any high-resolution information, they may still contribute constructively
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to the lower-resolution information content. Because the lower-resolution

information may still be useful in particle alignment, this approach is more

attractive than the alternative of throwing away later movie frames for high-

resolution reconstruction. Because it results in particle images with

improved signal-to-noise ratios this approach was called “particle

polishing,” a sideways reference to a quirk in the field whereby the crispest

images are referred to as “shiny” (which was first used by Xuekui Yu at the

2007 Gordon research conference for 3D-EM).

3. A TYPICAL HIGH-RESOLUTION STRUCTURE
DETERMINATION PROCEDURE

Fig. 1 shows a flowchart of a typical high-resolution structure deter-

mination project from movies acquired on a direct-electron detector.

Micrograph-wide beam-induced motions are first corrected by aligning

the frames of the recorded micrograph movies, and an average micrograph

is calculated for every movie. This step is often performed using the

MOTIONCORR program (Li et al., 2013). Secondly, one uses another

third-party program to estimate the parameters of the CTF for each average

micrograph. Implementation of a wrapper in the RELION GUI makes it

convenient to use CTFFIND (Mindell & Grigorieff, 2003; Rohou &

Grigorieff, 2015) or Gctf (Zhang, 2016) for this task.

Fig. 1 Workflow of a typical structure determination project in RELION. Processes indi-
cated with a star are skipped if movies are unavailable.
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Next, one needs to identify the positions of individual particles in all

micrographs. For this task the user first manually selects suitable particles

from a few micrographs: typically around a thousand particles is enough.

These particles are extracted into small square images, called boxes, where

the size of the box is typically set to around two times the largest dimension

of the complex of interest (see Fig. 2). Sometimes smaller boxes are used for

highly elongated particles. Upon particle extraction, the individual particle

images are normalized to have zero-mean and unity-variance in the back-

ground noise area, which is defined as the area outside a circular mask (see

also Fig. 2). The diameter of this mask is set slightly larger than the largest

dimension of the complex. A ramping background density may be modeled

at this stage by fitting a 2D plane through the background pixels and sub-

tracting this plane from the particle.

After extraction, the particles are subjected to a first round of reference-

free 2D class averaging, which is called 2D classification in RELION. This

task is performed using the same regularized likelihood optimization algo-

rithm as described above, although in this case the references are 2D images

and one marginalizes only over in-plane orientations. For cryo-EM data the

number of classes for this run is typically set such that at least 50–100 exper-
imental particles contribute on average to each class, so often one uses

around 20 classes at this stage. From the resulting 2D class averages, one

selects a few (usually not more than 5–10) representative views, which

are used as templates for automated particle picking of all micrographs

(Scheres, 2015). It is important to check that these templates are

centered inside the particle box to prevent bias in the autopicked coordi-

nates. In case the templates are not centered, they can be moved to their

center-of-mass (assuming the signal is positive, ie, white) using the

relion_image_handler program. Besides the templates, the autopicking

algorithm has two additional parameters that are important: a threshold that

expresses how restrictive the particle picking is (with higher threshold values

being more restrictive, ie, picking fewer particles) and a minimum inter-

particle distance. The minimum inter-particle distance is often set in the

range of 50–70% of the longest dimension of the macromolecular complex

of interest. Useful thresholds are often in the range of 0.1–0.5, where noisier
micrographs generally require lower autopicking thresholds. For very noisy

data, useful values as low as 0.05 have been observed, but in these cases one

should be extra vigilant of template bias. Template bias leads to a dangerous

situation where averages of experimental particle images reproduce the ref-

erence image used to pick the particles, even if the picked particles only
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Fig. 2 Examples of class averages from a 2D classification of cryo-EM particles of an E. coli DNA replication complex (A) and E. coli β-galac-
tosidase (B). Suitable class averages are indicated with a “✓.” Class averages corresponding to large Einstein-from-noise classes are indicated
with an “E,” class averages with interfering neighboring particles are indicated with an “N,” a class of a partially formed complex is indicated
with a “P,” and classes corresponding to otherwise unsuitable particles are indicated with an “X.” The particle box size and the mask diameter
used for particle extraction and normalization are indicated in the first class average in (B).



contain background noise. This is often referred to as “Einstein-from-

noise,” as a popular example to illustrate this effect uses a template picture

from Einstein (Henderson, 2013; van Heel, 2013). To aid in the recognition

of template bias and to prevent high-resolution bias, the template images are

typically low-pass filtered to around 20–30 Å resolution. A more detailed

description of how to recognize template bias is given below.

After extraction of the autopicked particles, one needs to identify those

particles that are suitable for high-resolution structure determination. There

are multiple reasons why particles may be unsuitable. The autopicking algo-

rithm itself has been observed to be prone to selecting false positives in the

form of high-contrast artifacts (Scheres, 2015), while noise-only images may

result from low autopicking thresholds. In addition, particles may be par-

tially unfolded during cryo-EM sample preparation, impurities in the sample

may be mistaken for the particle of interest, or too closely neighboring par-

ticles may prevent their adequate alignment. A first, computationally cheap

approach to identify false positives from the autopicking is called “particle

sorting.” This approach subtracts the corresponding templates from each

experimental particle, and calculates a range of features on the difference

images. Sorting all particles on the sums of their Z-scores over all features

(Scheres, 2010) then may be more convenient to identify outliers in large

datasets.

One of the most effective ways of selecting suitable particles is 2D clas-

sification. Typically, for large datasets one uses approximately 200 classes,

while for smaller datasets, one restricts the number of classes such that at least

50–100 particles contribute to each class on average. Manual inspection of

the resulting 2D class averages, often ordered on the number of particles

contributing to each class, is then used to select suitable particles. Provided

full CTF correction is performed, suitable particles will result in 2D class

averages with strong, white density for the macromolecular complex and

a black and featureless background. The macromolecular density should

ideally not consist of white blobs for each protein domain, but contain

clearly visible features of projected secondary structure elements throughout

the complex. Overfitting of noise sometimes results in radially extending

“hairy” artifacts in the solvent regions of the class averages. These undesired

artifacts are indicative of bad alignments and typically only appear with very

noisy data. Prevention of these artifacts may sometimes be achieved by

limiting the resolution of the Fourier components that are used in the expec-

tation step of the 2D classification. Often a resolution limit in the range of

15–20 Å is useful in initial runs, and this limit may be relaxed in later runs.
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The selection of classes that are suitable for high-resolution reconstruc-

tion requires user supervision. High-contrast false positives from the

autopicking and relatively small, low-resolution class averages are relatively

easy to distinguish from the suitable classes. For the novice user, Einstein-

from-noise classes are often harder to identify, yet their removal from the

dataset is important. Sometimes, the class averages of Einstein-from-noise

classes remain limited in resolution, and they can be readily identified by

their blob-like aspect. In other cases, and especially for smaller macromolec-

ular complexes, Einstein-from-noise classes may also give rise to relatively

high-resolution averages. These class averages are often more grayish in their

appearance than the suitable white-on-black classes, and high-resolution

features often occur just as strongly in the surrounding background as in

the apparent density of the complex. Fig. 2 shows examples of suitable

and unsuitable 2D class averages of a 250 kDa DNA replication complex

from E. coli (Fernandez-Leiro, Conrad, Scheres, & Lamers, 2015) and of

the 450 kDa E. coli β-galactosidase complex (Scheres, 2015). Selection of

the suitable classes may be performed conveniently through the GUI,

and the selected particles from one 2D classification may be fed into an ensu-

ing one. Sometimes, one also performs a subsequent 2D classification on

particles that were selected from classes that did not look optimal in an

attempt to rescue suitable particles that would otherwise be discarded. Most

often, not more than three subsequent 2D classifications are performed.

Strongly depending on the quality of the original micrographs and the

threshold used in the autopicking, 20–80% of the autopicked particles

may be discarded at this stage.

Next, one typically also uses an initial 3D multireference refinement run

(called 3D classification) to continue the selection of suitable particles for

high-resolution structure determination. The initial 3D reference that is

required for 3D classification or 3D auto-refinement cannot be generated

inside RELION itself. Popular programs to calculate such initial models

from the particle images themselves are EMAN2 (Ludtke, Baldwin, &

Chiu, 1999; Tang et al., 2007; see also chapter “Single Particle Refinement

and Variability Analysis in EMAN2.1” by Ludtke) and SIMPLE (Elmlund,

Davis, & Elmlund, 2010). Alternatively, one may use maps of similar

complexes from the EMDB, maps generated from related PDB entries,

or maps obtained by random conical tilt reconstruction (Radermacher,

Wagenknecht, Verschoor, & Frank, 1987) or subtomogram averaging

(Walz et al., 1997). In some cases, in particular when the complex of interest

has a known point-group symmetry, refinements may even be started from a
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spherical blob. The number of classes to be used in the initial 3D classifica-

tion run depends on the size of the dataset and the available computer power.

For smaller datasets one uses on average at least 5000 particle images per class,

while for larger datasets one rarely uses more than 8-10 classes to reduce

computing costs. The initial 3D classification is run with exhaustive angular

searches, and typically without imposing symmetry. As in the case of 2D

classification, the resolution of the Fourier components that is taken into

account in the expectation step can again be limited to prevent overfitting.

More details about the 3D classification are given in the next section. Again,

suitable classes will show strong protein-like features, for example, rod-like

densities for α-helices, while unsuitable classes will be of lower resolution or
may not resemble the complex of interest. At this stage, reconstructions that

correspond to the complex of interest in different conformational states are

usually still kept together for subsequent movie-refinement.

One problem that may arise at this point is that there are not enough

different views for 3D reconstruction because the particles adopted a

strongly preferred orientation on the experimental support. This problem,

which is often already detectable from a shortage of different 2D class aver-

ages, may manifest itself in streaky reconstructions, where densities are

smeared out in the direction of the predominant view. A related problem

may be that different classes become streaky in different directions, which

is an indication that the classification converged to separate different views

rather than different structural states. Such classifications are typically not

useful. As long as some of the minority views are available in the dataset,

throwing away particles from the predominant view may help to balance

the orientational distribution and thereby get better reconstructions and

classifications. This was, for example, crucial in the structure determination

of the dynactin complex (Urnavicius et al., 2015). In many cases it is prob-

ably more efficient to tweak the cryo-EM sample preparation procedure, for

example, by adding small amounts of detergents or by changing the type of

experimental support, in order to get more different views.

The selected particles after the initial 3D classification are then used for

movie-processing. For this, one first runs a 3D auto-refinement of the

selected particles. Some degree of structural heterogeneity in the data at this

point is acceptable. The objective of this refinement is to determine the ori-

entations of all particles with respect to a single consensus reference. If at this

point the consensus map does not extend well beyond 10 Å resolution, then

movie-processing will probably not be effective and could be skipped. Oth-

erwise, the consensus refinement is continued for a single iteration, where
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running averages of the movie frames of each particle are aligned to refer-

ence projections of the consensus reconstruction. The user has to define the

width of the running averages, which depends on the dose per movie frame

and on the size of the complex of interest. For large complexes (eg, larger

than 1 MDa) an accumulated dose of 3–6 electrons (e�) per Å2 in the run-

ning averages is usually sufficient. Smaller complexes may benefit from

wider running averages, eg, with an accumulated dose in the range of

7–10 e�/Å2. In the subsequent particle polishing step, the translations from

the movie refinement are used to fit straight tracks that describe the beam-

induced motion for each particle. How many neighbors contribute to the

fitting of each particle depends on a user-controlled standard deviation of

a Gaussian weighting function. Larger standard deviations are needed for

smaller particles, as their individual tracks will be noisier and more neighbors

are needed to get reliable fits. Useful values for the standard deviation there-

fore also depend on how many particles there are on each micrograph. For

particles with molecular weights less than 0.5 MDa useful values are often in

the range of 500–1500 Å, while values below 500 Å are often used for larger

particles. Reconstructions with individual movie frames are then used to

determine the power of the signal at every spatial frequency for radiation-

damage weighting. This often represents a critical step, and inspection of

plots of both the B-factors and the linear scale factors is highly rec-

ommended. In the weighting process, the absolute values of the scale and

B-factors of the movie frames are not important, only the differences

between them matter. The B-factors are typically relatively high negative

numbers in the first few frames (eg, with an accumulated dose of 1–3 e�/
Å2) due to rapid initial beam-induced motions; they become smaller for

intermediate frames (4–10); and then increase again for later frames due

to radiation damage (eg, from an accumulated dose of 10–15 e�/Å2

onward). The linear scale factors typically decrease in a fairly linear manner

throughout the movie, possibly with the exception of the first one or two

frames, which may be somewhat lower. As a typical example the resulting

plots and frequency-dependent weights for each movie frame are shown for

a dataset on bovine complex-I in Fig. 3. If these plots do not look as

expected, then the user may change the widths of the running averages,

or the standard deviation of the Gaussian that expresses how many neigh-

boring particles influence the fitted motion tracks. Also changing the reso-

lution limits for the B-factor calculations or the tightness of the mask may

help to get better plots. Visual inspection of the fitted beam-induced motion

tracks and the Guinier plots that are used to estimate the B-factors may be
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helpful in identifying how these parameters may be changed. In addition,

instead of performing reconstructions from individual movie frames to esti-

mate the B-factors, one may perform reconstructions from running averages

of multiple movie frames. The drawback of this approach is that large dif-

ferences in the B-factors of sequential movie frames, as for example,

observed in the first few frames in Fig. 3, cannot be modeled accurately.

After particle polishing, the resulting “shiny” particles may be used for

further treatment of structural heterogeneity as outlined in more detail in

the next section. Once a structurally homogeneous subset has been identi-

fied, a final 3D auto-refinement is performed, which is followed by post-

processing to sharpen the map and to estimate its final resolution. The

solvent mask for the postprocessing procedure can be calculated automati-

cally from the reconstructed density, but the user should check that the

resulting mask does not cut off part of the complex and that the edges of

the mask are sufficiently wide. Too sharp edges on the mask will lead to

strong convolution effects on the FSC curves, and unreliable (typically

too low) resolution estimates. Therefore, it is important that the user inspects

the FSC curves from the phase-randomization procedure. In particular, FSC

values between the masked phase-randomized maps should be close to zero

at the estimated resolution of the map. RELION uses cosine-shaped edges

on masks, and useful widths of the mask edges are often in the range of

3–10 pixels. Masks around specific parts of the complex may be used to

Fig. 3 Radiation-damage weighting. (A) B-factors and linear scale factors as estimated
for all 32 movie frames of a cryo-EM dataset on bovine complex-I. (B) The resulting
frequency-dependent weights for each movie frame. The width of each band indicates
the relative weight at each frequency in each frame. At each frequency the sum over
frames of the weights is unity. Note that the early and the later frames hardly contribute
to the highest frequencies, whereas they do contribute to the lower frequencies. This
figure was adapted from Scheres, S. H. W. (2014). Beam-induced motion correction for
sub-megadalton cryo-EM particles. eLife 3, e03665.
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estimate variations in local resolution. This may be useful to calculate better-

resolved parts of the map to higher resolution, and more flexible parts to

lower resolution. The overall reported resolution should however be calcu-

lated around the entire complex, and not merely reflect the resolution of the

best ordered region. Finer variations in local resolution are often estimated

using a wrapper from the RELION GUI to the RESMAP program

(Kucukelbir, Sigworth, & Tagare, 2014). The same mask that encompasses

the entire complex from the postprocessing approach should be provided to

RESMAP in order to obtain reliable resolution estimates.

4. DEALING WITH STRUCTURAL HETEROGENEITY

4.1 3D Classification with Exhaustive Angular Searches
Themain approach to distinguish projections from different 3D structures in

RELION is 3D classification. Inside this approach, multiple reconstructions

are refined simultaneously and one marginalizes over both the orientational

and class assignments of the particle images. As demonstrated by the previ-

ously introduced unregularized likelihood approach to 3D classification in

real-space (ML3D) (Scheres, Gao, et al., 2007), marginalization over both

orientations and classes allows classification without the need for prior

knowledge of the differences between the structures present in the data. This

unsupervised classification is achieved by initializing multireference refine-

ments from a single, low-resolution consensus model and assigning a ran-

dom class to each particle in the first iteration. In this way, apart from the

consensus model, the user only provides the number of desired classes.

The actual number of different structures in the data is typically unknown,

but in practice different runs with varying numbers of classes generate useful

results. Because the user does not provide different references, against which

to match the structural heterogeneity in the data, in machine-learning ter-

minology this is called clustering instead of classification.

The simultaneous refinement of multiple references precludes the appli-

cation of the gold-standard refinement approach, as the randomly seeded

classification convergence may be very different for the two halves of the

data. Therefore, inside the 3D (and also the 2D) classification approach in

RELION, the resolution of each of the models is estimated directly from

their power spectrum. This could in principle lead to overfitting, and the

user has control over this by adjustment of the regularization parameter

T. Lower values of T will prevent higher-resolution features to appear in

the reconstructions and thus keep overfitting at bay. In practice, one does

not change T very much. Most 2D classifications are performed with
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T¼2, while 3D classifications typically use values around T¼4. One

important exception to this is masked classification, which is described in

more detail below.

If one starts without any knowledge of the relative orientations of the

particles, then one needs to marginalize over all orientations in the likeli-

hood function, or in other words one needs to perform exhaustive angular

searches. To limit the associated computational costs, exhaustive angular

searches in 3D classification are typically performed using a relatively coarse

angular sampling. Because RELION uses the Healpix algorithm (Gorski

et al., 2005) to sample the first two Euler angles on the sphere, only certain

angular sampling rates are allowed. A sampling rate of 7.5 degrees is most

often used for exhaustive searches. For highly symmetrical structures,

eg, with icosahedral or octahedral symmetry, a 3.7 degree sampling may

be better, although 3D classifications with exhaustive searches are typically

performed without imposing symmetry, even if the complex of interest is

known to have symmetry. In these asymmetric classifications one aims to

remove junk or otherwise unsuitable particles from the dataset, and impos-

ing symmetry on junk particles might make them look more like the struc-

tures of interest. Because each junk particle is probably different from all

other junk particles, the concept of a “junk class” does not necessarily exist.

Nevertheless, suitable particles tend to group together in one or more classes

that yield reconstructions with better protein features than classes with junk

particles. The latter tend to yield reconstructions with lower resolutions and

without apparent symmetry.

If large conformational or compositional differences exist between the

particles in the dataset, then 3D classification with exhaustive angular

searches may also separate these out. Sometimes, this initial stage of separat-

ing out junk particles and very large conformational differences is repeated

several times, where the selected subset from a previous run is used as input

for the next.

4.2 Detection of Remaining Structural Heterogeneity
Once a subset of non-junk particles has been selected, all relative orienta-

tions of the selected particles may be determined with improved accuracy

in a 3D auto-refinement run. If multiple different structures were encoun-

tered in the first 3D classification round, then separate 3D auto-refinements

may be performed for each of the corresponding subsets. After 3D

auto-refinement, postprocessing may then be used to sharpen the refined

maps and to calculate their true resolution after solvent masking. Indications
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whether remaining structural heterogeneity is still present may then be

obtained from visual inspection of the resulting reconstructions (both before

and after postprocessing) for blurry parts of density. Often, looking at the

maps in 2D slices, for example, in RELION itself, is highly complementary

to looking at 3D renderedmaps in a program like UCSFChimera (Goddard,

Huang, & Ferrin, 2007; Pettersen et al., 2004). In addition, the calculation of

a map with local resolution variations by the wrapper to the ResMap pro-

gram (Kucukelbir et al., 2014) is useful, since large variations in local reso-

lution are a strong indicator of remaining structural heterogeneity.

4.3 3D Classification with Finer, Local Angular Searches
Small conformational or compositional differences may not be separated

well using the relatively coarse angular samplings that are typically used in

3D classification with exhaustive angular searches. One option to separate

structures with smaller differences is to use the refined orientations from a

previous (consensus) 3D auto-refinement as input for a 3D classification

with finer angular samplings. In order to reduce the computational costs

of this classification, one performs only local searches of the angles around

the angles from the consensus refinement. This approach implicitly sets the

prior probabilities of angles that deviate much from the input ones to zero,

ie, one assumes that the angles from the auto-refinement are close to the true

angles. This assumption probably holds reasonably well when conforma-

tional changes are relatively small, and thereby this approach is highly com-

plementary to 3D classification with exhaustive searches, which is better

suited for large conformational differences.

An extreme, and computationally even cheaper, alternative to 3D clas-

sification with local angular searches is to keep the orientations from the

consensus refinement completely fixed. In this type of 3D classification,

one only marginalizes over the class assignment and assumes that the orien-

tations from the consensus refinement are the correct ones. Because in this

calculation one only needs to compare each particle image with a single pro-

jection for each of the references, these calculations can be performed very

rapidly. Most often, these 3D classifications without angular searches are

performed within masks, as explained below.

4.4 Masked 3D Auto-Refinement
In many cases, the structural heterogeneity of interest is of a continuous

nature, for example, when a particular subunit rotates relative to the rest
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of the complex. In other cases, multiple subunits all move independently

from each other. In such cases, masked 3D auto-refinement may be a suit-

able tool to deal with the multitude of different 3D structures in the data.

In this approach, one applies a 3D mask to the reference at every itera-

tion. By masking out part of the complex, the experimental particle images

are aligned only with respect to that part of the structure that lies within the

mask. Thereby, the refinement becomes effectively insensitive to what hap-

pens in the regions outside the mask. Masks may be derived from fitted PDB

models, or generated using the relion_mask_create program. Interactive

editing of masks may be performed using the “Volume eraser” tool in UCSF

Chimera (Pettersen et al., 2004). In order to prevent artifacts in the Fourier

domain due to the convolution effects of masking, one again needs to use

soft edges on the masks. Cosine-shaped soft edges may be added to masks

using the relion_mask_create program. Often, useful widths of the soft

edges are in the range of 3–10 pixels.
An insightful example of howmasked 3D auto-refinement may be useful

to deal with continuous motions was performed for the cytoplasmic ribo-

some of the Plasmodium falciparum parasite (Wong et al., 2014). As often

observed for cryo-EM datasets of ribosomes, the ribosomes in this sample

adopted multiple different ratcheted states, where the small subunit rotates

relative to the large subunit. Because many intermediate rotated states exist,

the structural heterogeneity can be interpreted as an almost continuous

inter-subunit rotation. The resulting reconstruction from all particles

showed relatively well-defined density for the large subunit (which domi-

nates the alignment), while density for the small subunit was more blurred.

Separation of this rotation in a discrete number of classes, like one would do

in 3D classification, would be difficult. One would need to use a very large

number of classes to describe the near-continuous motion, and one would

end up with very few particles per class.

However, by applying a mask around the large subunit and aligning all

particles to the mass within the mask, one can keep the entire dataset

together. Conversely, one can do the same for the small subunit. For the

P. falciparum dataset, this approach resulted in much improved reconstruc-

tions for both subunits. In addition, as one obtains two sets of angles for

all particles, the differences between these sets carry information about

the ratcheted state of each particle, although this information was not used

in the P. falciparum study. One problem with these masked refinements is

that one ends up with two separate (masked) reconstructions for the two

subunits, in which information about the interface between the subunits
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may not be well defined. Therefore, apart from the two separately masked

reconstructions, the map from the unmasked refinement of the entire ribo-

some remained useful to inspect the subunit interface. The reconstruction

from the unmasked refinement was also used to report on a single resolution

estimate.

4.5 Masked 3D Classification
Masked 3D classification is the multireference equivalent of masked 3D

auto-refinement. By masking out a region of interest from all references

at every iteration, the classification can be focused on a specific region of

interest, while structural variability in other regions is ignored. This is useful

for many types of structural heterogeneity. For example, it may be used to

separate complexes from which parts are missing in the case of non-

stoichiometric complex formation, or one may separate conformational dif-

ferences in one part of the structure while ignoring differences in other parts.

Masked 3D classification is also useful to describe continuous motions in

parts of the structure by dividing the data into subsets. Whereas 3D auto-

refinement could in principle describe continuous motions without subdi-

vision into a discrete number of subsets, auto-refinement cannot be applied

to cases where the flexible region is very small. In such cases, finding the

orientations of the particles with respect to that small region will be difficult.

This is because projections of the masked references will only contain a small

amount of mass, and the corresponding signal in the particle images will be

drowned in the experimental noise and the projected mass of the rest of the

complex. As a rule of thumb, in order to be able to apply masked 3D auto-

refinement, one needs to have at least as much molecular mass inside the

mask as one would need for the structure of an isolated complex, say at least

150–200 kDa. Many macromolecular complexes have flexible parts that are

much smaller than this, and for these cases masked 3D classification provides

a useful alternative.

In the masked 3D classification approach one typically provides the

angles as determined in a consensus refinement as input and one does not

perform any orientational searches. Apart from strongly reduced computa-

tional costs, this approach has the added benefit that particles cannot rotate or

translate their region of interest outside of the mask, which would require

even more classes. The result of these masked 3D classifications without

angular searches is that the potentially continuous motion of the region

of interest is divided into a discrete number of subsets. Each of these subsets
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will naturally contain fewer particles than the original dataset, but the density

of the subset reconstruction may be significantly improved, in particular

when certain conformational states are more recurrent than others. If the size

of the mask is a borderline case between masked auto-refinement or masked

classification, then one may also employ local angular searches around the

angles found in the consensus refinement. Because the 3D classification

approach estimates the resolution from the power spectrum of each of

the reconstructions, and because these reconstructions are now masked to

select a potentially very small region, one typically uses higher values of

the regularization parameter T in masked classifications. Whereas in

unmasked 3D classifications T is typically kept around 4, values of 10–40
have been used in masked classification. Smaller regions require larger values

of T. Interpretation of the maps by the user is required to find a useful value

of T that balances the build-up of noise with the ability to visualize high-

resolution features and separate small structural differences.

4.6 Masked 3D Refinement/Classification with Partial Signal
Subtraction

The masked 3D auto-refinement and classification approaches suffer from a

fundamental inconsistency. Inside these calculations, experimental projec-

tions of the entire complex are compared with projections of masked refer-

ences, which contain only part of the complex. Therefore, the density in the

experimental particle image that comes from the part of the complex that lies

outside the mask will effectively act as noise in the comparisons. This noise

will deteriorate the orientational and or class assignments. In the P. falciparum

ribosome case described above, the part of the experimental particle images

that corresponded to the large subunit caused larger inconsistencies in the

masked refinement of the small subunit than vice versa. Consequently,

the resolution in the masked refinement of the small subunit was consider-

ably lower than for the large subunit.

The inconsistency in comparing experimental projections with projec-

tions from masked references can be reduced by subtraction of part of the

signal from the experimental images (Fig. 4). In this approach, one first per-

forms a consensus 3D auto-refinement of the entire dataset. Then, one

designs two masks. The first mask encapsulates the region of interest on

which one will perform a masked 3D classification (or a masked 3D auto-

refinement). The second mask comprises the entire complex except for the

region that lies inside the first mask. This second mask is applied to the

reconstruction from the consensus refinement, and projections of this
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masked reconstruction are subtracted from all experimental particle images

in the dataset. For this subtraction, one takes the effects of the CTF for each

particle into account, and one uses the orientations as determined in the con-

sensus refinement. This creates a new dataset of experimental images from

which part of the signal was subtracted. The relion_reconstruct program

Fig. 4 Partial signal subtraction. (A) A 3D model of a complex of interest. (B) The part of
the complex one would like to ignore (V1). (C) The part of the complex one would like to
focus classification on in a masked classification or 3D auto-refine (V2). (D) An experi-
mental particle image is assumed to be a noisy, CTF-affected 2D projection of the entire
complex in (A). (E) A CTF-affected 2D projection of V1. (F) A CTF-affected 2D projection of
V2. (G) Partial signal subtraction consists of subtracting the CTF-affected 2D projection of
V1 (E) from the experimental particle (D). This results in a modified experimental particle
image (G) that only contains a noisy and CTF-affected projection of V2. This figure was
adapted from Bai, X., Rajendra, E., Yang, G., Shi, Y., Scheres, S.H. (2015b). Sampling the con-
formational space of the catalytic subunit of human γ-secretase. eLife 4. doi:10.7554/
eLife.11182.
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may be used to calculate a 3D reconstruction of the subtracted particles in

order to verify the subtraction. The subtracted dataset can then be used for

masked 3D classification or auto-refinement. Again, multiple scenarios are

possible. Orientational searches can be performed exhaustively, restricted to

local searches, or kept fixed at the orientations from the consensus refine-

ment. If the remaining part of the complex is small, masked 3D classifications

may be used to divide the data into a discrete number of subsets, while con-

tinuous motions in larger parts of the complex may be described using

masked 3D auto-refinements.

Early applications of the partial signal subtraction approach were used

by Michael Rossmann and colleagues to study symmetry mismatches in

bacteriophage ϕ29 (Morais et al., 2003) and flaviviruses (Zhang,

Kostyuchenko, &Rossmann, 2007). Because their reconstruction algorithm

did not maintain the correct absolute grayscale of the experimental projec-

tions, it was necessary to optimize a scale factor between the reconstruction

and the experimental particles. This is not necessary inside RELION, where

the original grayscale is maintained in the reconstruction. Moreover,

whereas the early work on viruses was done with CTF phase-flipped exper-

imental images, inside RELION both the phases and amplitudes of the CTF

of each particle are taken into account in the subtraction process.

Implementation of the subtraction approach inside RELION (Bai,

Rajendra, Yang, Shi, & Scheres, 2015) recently allowed separation of three

different conformations of the human gamma-secretase complex. In this

case, a masked 3D classification was performed on the catalytic subunit,

while projections of the other three subunits were subtracted from the

experimental particle images. Because the region with the mask of the

catalytic subunit only comprised approximately 30 kDa, orientations were

kept fixed at those obtained in a consensus refinement of the entire

(170 kDa) complex. After identification of three distinct conformations of

the catalytic subunit, unmasked 3D auto-refinement of the original exper-

imental particle images led to three reconstructions of the entire complex to

near-atomic resolution. The observation that these structures differed only

in the orientation of a few alpha-helices illustrates the exciting potential of

masked classification with partial signal subtraction in separating cryo-EM

images which differ only at the secondary structure level. The same approach

was also used by Ilca and colleagues to subtract viral capsid densities in order

to visualize an RNA polymerase bound inside double-stranded RNA

bacteriophage φ6 (Ilca et al., 2015), while Zhou and colleagues used their

own modified version of RELION to subtract projections of NSF rings
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to analyze structural variability in the SNAP–SNARE complex (Zhou,

Huang, et al., 2015).

4.7 Dealing with Pseudo-Symmetry
Many macromolecular complexes adopt some form of symmetry, but often

this symmetry is only true for part of the complex. A generally applicable

approach to deal with pseudo-symmetric complexes was recently used to

solve the structure of a human apoptosome complex (Zhou, Li, et al.,

2015). In this case, seven copies of the central protein form a ring-like

hub with C7 symmetry. However, this symmetry is broken due to the

dynamic nature of seven protruding spokes. Because each of the seven

spokes seems to flex with respect to the central hub in an independent man-

ner from the other six spokes, none of the complexes is truly symmetric.

Consequently, a consensus refinement with imposed C7 symmetry led to

a map with an overall resolution of 3.8 Å, where the central hub was well-

resolved but the resolution for the spokes was considerably lower.

In order to deal with the pseudo-symmetry, the dataset was artificially

expanded according to the pseudo-symmetric C7 point group. In this case,

the dataset was enlarged sevenfold, by replicating each particle and adding

(n/7)*360° with n¼1,…,7 to the first Euler angle of every particle from

the C7 consensus refinement. In this way, each of the seven spokes of every

particle is oriented onto every position on the C7-symmetric ring. Masked

classification within a single spoke and without angular searches then

resulted in the identification of a subset of all spokes that were in a compar-

atively highly populated conformation relative to the symmetrical ring.

Subsequent masked 3D auto-refinement in C1, where the mask included

the entire central hub plus the single protruding spoke, yielded a reconstruc-

tion in which the spoke was determined to a resolution of 5 Å, which

allowed docking of available crystal structures with confidence. Note that

this C1 refinement was done with only local angular searches around the

expanded set of orientations in order to prevent copies of the same particle

from contributing to the reconstruction more than once in the same orien-

tation. Because symmetry expansion is not as self-evident for noncyclic

space groups, a stand-alone command line program was implemented to

expand a dataset for any given symmetry point group. This program, which

is called relion_particle_symmetry_expand, is already available upon

request and will be part of RELION-2.0.

It should be noted that this approach shows similarities with an earlier

approach to deal with pseudo-symmetric structures that was described by
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Briggs et al. (2005). In their study of Kelp fly virus capsids, they identified

two different types of fivefold vertices in the pseudo-icosahedral capsids.

They used the orientations from an icosahedral consensus refinement to

extract subimages of all vertices of each capsid, and used the known orien-

tations from the icosahedral refinement to select similarly oriented vertices

for multivariate statistical analysis and classification. Refinements of the

identified classes were then performed exploiting the known orientations

of the vertices with respect to the entire capsid.

Although not used for the apoptosome structure, the symmetry-

expansion approach can also be combined with the partial signal subtraction

approach. One could, for example, expand the set of orientations according

to the broken point-group symmetry, and then subtract the consensus den-

sity for the symmetric part of the structure plus all-but-one of the asymmet-

ric features from the experimental particle images. Then, one would

perform a masked 3D classification or auto-refinement on the remaining

asymmetrical feature, possibly followed by a masked 3D auto-refinement

that includes both the symmetrical part of the complex and the single asym-

metrical feature.

4.8 Multibody Refinement
At an early stage of the structure determination process of the spliceosomal

U4/U6.U5 tri-snRNP particle from the Nagai lab (see also below) an auto-

mated approach to iterative masked refinements with partial signal subtrac-

tion from multiple regions was explored (Nguyen et al., 2015). The

spliceosome has been an example of a notoriously difficult cryo-EM sample

for many years due to its extremely dynamic nature (L€uhrmann & Stark,

2009). The 1.4 MDa Y-shaped tri-snRNP complex may be considered

to consist of four more-or-less independently moving regions: a central

“body”; a more flexible “foot” and “head”; and an extremely flexible

“arm.” In the automated approach, four regions were refined in parallel

using masked 3D auto-refinement with partial signal subtraction. At every

iteration, a mask around each of the four regions was applied in turn, and the

signal of the other three regions was subtracted from every particle. Masked

alignment of the four independent regions at every iteration led to four sets

of optimal orientations for every particle, one orientation for each region.

These optimal orientations were then used to perform a better signal

subtraction in the next iteration. This still experimental implementation,

which was called multibody refinement, holds the promise to automatically

refine multiple independently moving regions, or bodies, almost without
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user-intervention. However, the current implementation still suffers from

strong artifacts at the boundaries between the regions, and thus requires fur-

ther development to make it generally applicable.

4.9 A More Elaborate Example
A recent near-atomic resolution structure of the spliceosomal U4/U6.U5

tri-snRNP complex from the Nagai lab (Nguyen et al., 2016) represents

an insightful example of how several of the approaches described above

may be combined to describe molecular motions in a highly dynamic com-

plex. Despite the extensive amount of flexibility in this complex, maps in

which the majority of the complex could be resolved to near-atomic reso-

lution could be obtained using the procedures that are outlined in Fig. 5.

After following the standard procedures as outlined in Fig. 1, a refine-

ment of 140 thousand shiny particles led to a consensus map with an overall

resolution of 3.7 Å. However, due to apparent flexibility in the complex, the

reconstructed density in large portions of the map was not of sufficient

quality to allow building of an atomic model. Separate masked 3D auto-

refinements on the body, the foot and the head, with subtraction of the sig-

nal corresponding to the other regions, resulted in improved reconstructions

of these three regions to local resolutions of 3.6, 3.7, and 4.2 Å, respectively.

The improvement in density was largest for the head region, presumably

because of its very dynamic attachment to the body. Whereas large parts

of the head domain were only resolved to 8–10 Å resolution in the consen-

sus map, the 4.2 Å reconstruction from the masked refinement with partial

signal subtraction allowed the building of an atomic model for most of the

protein and RNA in this region.

Because the arm region is even more flexible than the head, and because

of its relatively small size, masked 3D auto-refinement of this region did not

work well. Instead, masked 3D classification with subtraction of the signal

from the other three regions was performed on this region. In an initial clas-

sification, a mask around only the arm region was used to divide the data

according to three different relative orientations of the arm with respect

to the body. Subsequent subtraction of only the head and the foot region,

combined with masked 3D auto-refinement of the body and the arm regions

together yielded three overall resolutions of 4.5–4.6 Å. Local resolution esti-
mates indicated that the arm regions in these maps were resolved to resolu-

tions in the range of 6.2–7.5 Å.
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In addition to the masked 3D classifications and auto-refinements, an

unmasked 3D classification with 1.8 degree local angular searches centered

around the orientations from the consensus refinement of the entire com-

plex was also useful to identify an open and a closed conformation of the

body and the head regions.

Fig. 5 An example of how to deal with structural heterogeneity is shown in the form of a
flowchart for the processing of cryo-EM data on the spliceosomal U4/U6.U5 tri-snRNP
complex. The various steps are described in more detail in the main text. This figure
was adapted from Nguyen, T.H.D., Galej, W.P., Bai, X.-C., Oubridge, C., Newman, A.J.,
Scheres, S.H.W., et al. (2016). Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å
resolution. Nature, 530, 298–302. doi:10.1038/nature16940.
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5. OUTLOOK

RELION is still under active development. Its high computational

costs (typically �100–200 thousand CPU hours to process a single dataset)

are currently an important bottleneck, especially for those labs that do not

have access to large computer clusters. Ongoing efforts in vectorization of

the code and its implementation for graphical processing units (GPUs) will

probably lead to significant reductions in these costs in the near future. This

will allow on-the-fly processing of micrographs during data acquisition, and

procedures to automatically execute a predefined workflow of individual

tasks are currently being developed. In addition, new algorithmic develop-

ments to handle helical assemblies; new approaches for electron tomography

(Bharat, Russo, L€owe, Passmore, & Scheres, 2015); and further develop-

ments of multibody refinement and other classification tools for flexible

complexes are all active areas of research. Hopefully, these developments

will continue to push the boundaries of cryo-EM structure determination.
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