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Abstract

The maximum-likelihood method provides a powerful approach to many pro-
blems in cryo-electron microscopy (cryo-EM) image processing. This contribu-
tion aims to provide an accessible introduction to the underlying theory and
reviews existing applications in the field. In addition, current developments to
reduce computational costs and to improve the statistical description of cryo-
EM images are discussed. Combined with the increasing power of modern
computers and yet unexplored possibilities provided by theory, these develop-
ments are expected to turn the statistical approach into an essential image-
processing tool for the electron microscopist.

1. INTRODUCTION

The cryo-electron microscopy (cryo-EM) single-particle reconstruc-
tion (SPR) problem is a very difficult one. Given a large number of very
noisy electron-microscope images, each showing a macromolecular “parti-
cle” in a random position and orientation, the problem is to deduce the
three-dimensional (3D) structure of the particles that were imaged. It is
amazing that standard software packages now allow even casual users to
perform such reconstructions, in a numerical process that seems little short
of magical. The goal of this chapter is to describe the basis of a particularly
powerful approach to the SPR problem and related tasks in two-dimensional
(2D) crystallography and electron tomography.

1.1. Maximume-likelihood estimates

When we use an SPR algorithm to obtain a 3D model from a set of images
X, how do we know that we have found the best model? Formally, we
would want to know what quantity is optimized to yield the model.
Traditional SPR refinement algorithms use an iterative process. The images
are aligned and sorted to give the best match to a set of projections of the nth
model. Given the angles of each projection, a synthesis of the 3D map from
the images is performed by standard methods, to yield the (n 4 1)st model.
This process is repeated until the model does not change. Arguably this
process yields a least-squares estimate, as the traditional cross-correlation-
based projection-matching step is equivalent to a least-squares optimization.
In the optimization process, a numerical density value is obtained for each
voxel of the model, and as a by-product the values of orientation angles for
each particle are also found. There is however no theory that says that the
model obtained in this way is the most reliable one.

The statistical approaches discussed in this chapter seek to maximize a
probability function. Suppose we group the desired 3D map along with any
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other quantities that we wish to estimate into a more generalized model ©.
In a sense, what we would like to maximize is the probability P(@|X) that
this model is the correct one, given the data. Unfortunately, there are both
philosophical and practical problems surrounding this quantity. Some peo-
ple would say that @ is not a random variable in the first place, so how can
one define a probability function. But if the philosophical problems are
bypassed, perhaps by imagining an ensemble of possible true structures &
that could have given us our data set X, there is still the problem of
computing this quantity. An easy way around these problems is to compute
the probability of observing X given @. This is a valid and computable
probability, and it is given a special name, the likelihood &£ (0) = P(X|O).
What is unusual here is that the likelihood &£ is expressed as a function of the
model @ rather than of the data X.

The choice of the likelihood as the quantity to be maximized can be
understood by applying Bayes’ rule,

P(O|X) = P(X|@)%. (10.1)

We know what P(X|@) is, that is just the likelihood. P(X) is an
imponderable: what is the probability of obtaining this data set instead of
some other? However, since it does not depend on @, we would not have
to worry about it, and for our present purposes we can replace it by a
constant. The resulting quantity to be maximized is P(X|@)P(@) and is
called the posterior probability. The model @ that maximizes it is called the
maximum a posteriori (MAP) estimate, and we discuss briefly the use of this
estimation approach at the end of this chapter. The term P(0O) is called the
prior probability, as it reflects any knowledge we might have about the
model in the absence of any data. For now, suppose we believe that all
possible models are equally likely, so that P(@) is also a constant. Then,
maximizing P(@|X) becomes the same as maximizing the likelihood.

Finding the model @ that gives the maximum value of the likelihood—
this is called the maximum-likelihood estimate or MLE—is a very good way
to find the best model. The MLE is asymptotically unbiased and efficient;
that is, in the limit of very large data sets, the MLE is as good or better than
any other estimate of the true model.

1.2. Introduction to the EM-ML algorithm

Finding the model @ that maximizes the likelihood is a daunting task. In
principle, the density value of each voxel in the 3D map must be varied until
the best set of densities is found—an optimization problem with on the
order of 10° unknowns! Fortunately, there is a straightforward way to find
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the ML estimate, called the expectation-maximization algorithm (Dempster
et al., 1977). We abbreviate this as the expectation-maximization maxi-
mum-likelihood (EM—-ML) algorithm to avoid confusion with the termi-
nology of EM for “electron microscopy.” The idea behind the EM-ML
algorithm is illustrated here with a simple example based on the Gaussian
mixture model (Redner and Walker, 1984), while a formal presentation of
the theory is considered in the next section of this chapter. Additional
examples designed to mimic cryo-EM are worked out in Yin ef al. (2003)
and continued to consider resolution in Prust ef al. (2009). More sophisti-
cated miniature examples are considered in Yin ef al. (2004).

Imagine a series of position measurements x; with i = 1, ..., N
coming from a single-molecule optical tracking experiment. Typically, the
observed position shows Gaussian-distributed errors from measurement
noise. One can record a large number of position measurements and com-
pute, for example, the MLE of the mean and variance directly from the
measurements.

Suppose that the single molecule under observation undergoes a con-
formational change between two states, which we call state 0 and state 1.
With this change the reporter group changes its true x-coordinate between
two discrete values. We would like to estimate these two values. One
approach would be to make a histogram of the measured values, as in
Fig. 10.1, and do some sort of fit to the histogram. A more powerful way
however is to find the MLE of the two mean values directly from the
measured values.

30 T T T T T T T T T

Frequency
—_ o [Ne)
W (=) W
. .

—_
(=]
T
!

x value

Figure 10.1 Histogram of values of a random variable x. The values were drawn from
a distribution consisting of a mixture of two Gaussians with means of 0 and 2.5.
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Computing the likelihood starts with the probability density function
(PDF) of the observed values, a mixture of two Gaussians,

1 2 2 2 2
fo(x) = — (ao W) /207 4 gy ) /20 ) (10.2)
V2n

In this example, we are interested in determining the model parameters
O = {uo, K1}, assuming that the other parameters 4y, a;, and o are already
known. The probability of a particular measured value would be vanish-
ingly small were it not for the fact that any physical measurement has a finite
resolution. Letting € be the resolution of measurement, the probability of
measuring the first value is

P, (xi|©) = ¢fo(x1) (10.3)

and the probability of the measurement of the entire data set is

Pu(X]0) = &™fo(x1)fo (x1)fo (x2)- - fo (xn).- (10.4)

Since € does not vary when @ is changed, it is irrelevant to the
maximization process. Thus in the literature this factor is traditionally
ignored; the likelihood is instead written simply as the PDF, which in this
case, is a product of simpler PDFs:

P(X[0) = fo(x1)fo(x2) - folxn)- (10.5)

Nevertheless maximizing this product of PDFs appears daunting.

In the case of a single Gaussian distribution, the maximization of the
likelihood turns out to have a very simple form. The ML estimates of the
mean and standard deviation (SD) are simply equal to the mean and SD of all
the measured values. In this special case, ML and least-squares estimations
give the same answer. Is there a way we can exploit this simple ML
estimation approach to the present problem involving a mixture of two
Gaussians?

We could just set a threshold and divide the data set into two halves. We
would then compute the average of all the x; values that fell below the
threshold, and do the same for all those above the threshold, and call these
our estimates of the means. However, taking the averages of these two
“classes” of measurements will produce estimates that are biased, being
spread more widely than the two correct means.

Estimating the two means would be very simple if we had independent
information about the underlying state of the molecule. Let y; be a set of
“switch” variables such that when y; = 0 we know that the corresponding x;
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is obtained from the molecule in state 0, and when y; = 1 the molecule is in
its state 1. Then, it is very easy to obtain the means 1 and p; which are the
MLE:s of the positions:

D IS
Eil —Yi
W = Zi)’ixi_
Z,‘Yi

(10.6)

Unfortunately, we do not have access to the y; values; they are so-called
“hidden variables.” The EM—ML algorithm however provides a simple way
to iteratively converge on the ML mean values. It starts with an initial guess of
the parameters of the two underlying Gaussian distributions. For example, the
initial guess could have means that are too far apart, as in the top panel of
Fig. 10.2A. The first step of the EM algorithm is to provide an estimate of the
hidden y; variable corresponding to each measurement x;. The estimate is
computed as the expectation value y;, which in this case is simply equal to the
probability of the molecule being in state 1. It is computed from each
measurement x; based on the current estimate of the Gaussian distributions.

The second step is the maximization step, where we compute the MLEs
of the means based on the inferred y values. In this case, the MLEs are simply
computed as weighted averages of the x; values, weighted by either 1 —
or y; to yield the two estimates (i and ;. The calculation is exactly the same
as in Eq. (10.6) except that y; replaces y;. This gives us two new mean values,
which we can then use for another round of the EM-ML algorithm.

The remarkable property of the expectation-maximization iteration is
that the new estimated values of the means are guaranteed to result in an
increased likelihood of the model. Figure 10.2 provides an illustration of the
EM-ML algorithm. In the figure, histograms are used as a visualization
device, but the underlying computations do not involve the binning or
sorting of events at all. The figure shows one EM—ML iteration, and also the
result after 24 iterations, when the parameters have reached a fixed value.

This simple example demonstrates three important features of the
EM-ML algorithm. First, the algorithm “fills in” missing information
through the computation of the expectation values of hidden variables.
Second, it exploits the hidden variable values to make the process of
computing the MLE much easier. Third, perhaps the most interesting aspect
of the EM-ML algorithm is that it makes use of “fuzzy” estimates of the
hidden variables. Even though the underlying y; values, could we measure
them, take only the values 0 and 1, the expectation values y; vary continu-
ously over the range of O—1. The maximization of the likelihood neverthe-
less converges correctly when these expectation values are used.
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Figure 10.2 EM-ML estimation of the means and amplitudes in a mixture of two
Gaussians as in Fig. 10.1. (A, top panel) A histogram of 1000 simulated measurements is
shown, along with two Gaussian components computed on the basis of initial guesses
for the mean and amplitude of the components. The middle panel shows how the
expectation y varies with the measured value x. Instead of there being a strict classifica-
tion of x values into one or the other component, these y values take on intermediate
values in the range of x values where the components overlap. The bottom panel
illustrates how a weighted average can give rise to the mean value for the right-hand
component. The bins of the histogram have been scaled by the values of y, while the
initial guess of the PDF is plotted as a smooth curve. The center of mass of the weighted
histogram yields the new estimate for ;. (B) The same plots are shown after the two
Gaussian components have been updated with new means and amplitudes by one
EM-ML iteration. (C) The result after convergence with 24 iterations. The simulation
was based on means of 0 and 2.5. The EM-ML estimated means were —0.06 and 2.46.

1.3. Relevance to SPR problems

The features of this simple example are mirrored in the much more complex
computations involved in SPR. In EM—ML processing of particle images,
“hard” values for the orientation angles of each particle are not assigned.
Instead, the orientation of each particle is described in a fuzzy way as a
probability density function, giving the probability that the particle assumes
each possible orientation. Similarly, when EM—ML algorithm is used to



270 Fred ). Sigworth et al.

simultaneously reconstruct several different conformations (i.e., distinct 3D
maps) from images of mixed populations of particles, the assignment of a
given particle image to a given conformation is treated as a hidden variable,
and is made in a “fuzzy” way.

This chapter reviews the applications of the EM—ML algorithm to a
range of image processing tasks across various cryo-EM modalities. First, a
formal description of the theory is presented along with a typical example
from cryo-EM image processing. This theoretical framework is then used as
a common basis to describe existing EM—ML approaches for the analysis of
single particles (with and without symmetry), 2D crystals, and subtomo-
grams. In addition, the validity of the most common statistical data model
and possible alternatives is discussed and an overview of approaches to
accelerating the intensive EM—ML computations is presented. The chapter
concludes with a discussion of the perspectives of the statistical approach to
cryo-EM image processing.

2. THEORETICAL BAsis

2.1. The maximum-likelihood estimator

At the heart of the ML method lies a parameterized, statistical model that is
used to describe the underlying physics of the data formation process. Again,
we denote the set of model parameters by @, and our data set of N
independent measurements by X = (Xi, X5, ..., Xn). Then, the statistical
model is expressed in the form of the probability density function P(X|@),
the probability of observing the data given @. For a given set of model
parameters, the PDF will show that some data are more probable than
others. In the practical situation, however, we are interested in the opposite.
We have already observed the data and are looking for those model para-
meters that best fit the data. In particular, we want to find those model
parameters that make the data “more likely” than any other parameter set
would make them.

To that purpose, and as explained in more detail in Section 1, we define
the likelihood function £(@) = P(X|O) as a function of . Whereas the PDF
is defined as a function of the data given a particular set of model parameters,
the likelihood function is a function of the model parameters for a given
data set. The method of ML aims at finding the set of parameters that
maximizes £(0). This is the maximum-likelihood estimator (MLE) of ©:

OME = argmax £(0). (10.7)
(]
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Assuming that all observations are statistically independent, the likeli-
hood can be written as a product of the PDFs of the individual observations:

N

20) =] rxie) (10.8)

i=1

and since maxima are unaffected by monotone transformations, for compu-
tational convenience, one often takes the logarithm of this expression:

L(O) = log(£(@)) = Z logP(X;|0). (10.9)

i=1

Depending on the form of P(X;|®), finding the maximum of L(@) may
be straightforward or extremely difficult. As we describe in the example
below, analytical expressions to obtain the MLE may be obtained directly
for simple problems. For many other problems, direct optimization of the
likelihood function is analytically intractable and more elaborate techniques,
like the EM—ML algorithm, must be employed.

2.2. An example of direct MLE calculation in cryo-EM

One example of straightforward likelihood optimization in cryo-EM is the
estimation of the underlying signal from a series of noisy, structurally homo-
geneous, and aligned 2D images. Let us assume the following data model:

X.=A+0G, with i=1,...,N, (10.10)

where Xj are the observed images of ] pixels each and with pixel values Xi;
A is the underlying 2D image (with pixel values 4)) that is common to all
images; and G; are the images of independent noise with pixel values G;
taken from a Gaussian distribution with zero mean and unity SD.

It is to be noted that in this case our set of model parameters @ consists of
image A and parameter 0. The PDF of observing pixel value Xj; is then
given by a Gaussian distribution centered at 4; and with SD ¢ (Flg 10.3).
Furthermore, because we assume 1ndependence between all pixels, the PDF
of observing the entire image X; may be expressed as the multiplication over
the PDFs of all individual pixels:

s Tl oo 2 - () {5

(10.11)
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Figure 10.3 An example of direct MLE calculation. (A) An image A with a zoom
window centered on one individual pixel value with value A; is shown. (B) Three
copies of image A with different instances of white Gaussian noise are shown together
with zoom windows on the same pixel j with pixel values Xy, X;;, and X3;. (C) the PDF
of the jth pixel in the noisy images is shown as a Gaussian curve centered at 4; and with
SD . Direct calculation of AJ-MLE is performed by averaging over X, X,;, and Xj;. (D)
The MLE of the entire image A is shown together with a zoom window, centered on
AJ-MLE. Note that the MLE of the image will approach the image in (A) if larger numbers
of noisy images are available.

where ||JX, — Al dzenotes the sum of the squared residuals over all
pixels ZiH(X"J — A)”.

Thereby, the log-likelihood function, as defined in Eq. (10.9), reduces
to:

1 &
L(O) = —JNlog( 27w> —ﬁz | Xi — Al (10.12)
=1

The MLE for the underlying signal may then be obtained directly by
setting the partial derivatives of Eq. (10.12) with respect to A, equal to zero
and solving for A;. This yields the well-known equation to calculate the
average image:

1 N
JMLE _ NZ;X,.. (10.13)

Similarly, the MLE for ¢ would yield the formula for calculating the root
mean square deviation between the average and the observed images.

Equation (10.12) illustrates that under the assumption of independent,
Gaussian noise with equal SD, the MLE is equal to the least-squares estimator,

which aims at minimizing Zfil | X; — A |*. This equality has been used
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erroneously to argue against the application of ML methods in cryo-EM.
However, as we see below, for more complicated problems the method of
ML will actually yield very different results from conventional approaches
based on least-squares estimation.

2.3. Incomplete data problems

For many problems, the likelihood function cannot be optimized directly,
but it can be simplified by assuming the existence of additional, “hidden”
variables. Without the hidden variables, the data are considered to be
incomplete. The complete data would comprise both the observed and the
hidden variables, and finding the MLE for the complete data problem
would be a trivial task. In some cases, the hidden variables actually corre-
spond to incompleteness in the data vectors themselves, due to problems in
the data collection process. More often however, the hidden variables
correspond to aspects of physical reality that could in principle be measured
but are not observed for practical reasons.

Let X be the incomplete, observed data and assume that a complete data
set (X, )) exists. Then, the MLE is determined by the so-called marginal
likelihood of the observed data:

£(0) = P(X|©) = L}pmy, 0)P(V]©)dY, (10.14)

where P(X|0) is the unconditional probability of X, regardless of the values
of ), and this probability is obtained by integrating the joint probabilities
over all possible values of ). This is called marginalization. P(X|), ©) is the
probability of X given that ) has happened, and P(Y|0) is the prior
probability of ) happening.

It is important to note that because of the marginalization Eq. (10.14) is
only a function of @ and not of the hidden variables ). Thereby, the
problem at hand is only to find those parameter values @™"* that maximize
the marginal-likelihood function.

2.4. An example of an incomplete data problem in cryo-EM

The first description of a ML approach to an incomplete data problem in
cryo-EM was described by Sigworth (1998). He considered the problem of
finding AM™F, cf. Eq. (10.13), for a set of noisy 2D images with unknown
in-plane rotations and translations. In other words, he presented a ML
approach to the 2D alignment of a structurally homogeneous set of images.
In this case, the data are modeled as:
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X; =Ry +A+0G;, withi=1,...,N, (10.15)

where Ry, denotes the in-plane transformation that brings the common
underlying signal in register with the ith image. This transformation comprises
a single rotation o; and two translations in perpendicular directions x; and y;.

The incompleteness of the observed data lies in the fact that the relative
orientations of all images have remained unobserved in the experiment. The
complete data set would be (X, )), with YV = (¢1, ¢», . . ., ¢n), and finding
the MLE for the complete data set would be as trivial as described in the
simple example above.

For the incomplete case, the marginal log-likelihood function, cf.
Eq. (10.14), is given by:

Le) =" 1ogL)p(X,.y¢, 0)P(6|0)d¢. (10.16)

For any given transformation ¢ and parameter set @, the conditional
probability of observing image X; is again expressed as a multiplication over
J Gaussian distributions, this time centered at the correspondingly oriented
reference image R,A:

P(Xi|¢, ©) = (ﬁ)i exp{W}. (10.17)

Note that, apart from the model parameters @, this probability is also a
function of the hidden variable ¢. This concept is further illustrated in
Fig. 10.4.

An additional advantage of the ML approach is the natural way in which
prior knowledge about the hidden variables may be handled. The term
P(¢|O) provides a statistical description of the distribution of the hidden
variables. If we assume that the in-plane rotations are evenly distributed and
that particle picking has left residual origin offsets with Gaussian distribu-
tions in both directions, the probability density of ¢» may be calculated as:

5 2
P($]©)dd = — exp{(x_éx) +r=4) }d“dxdy, (10.18)

2no? —207, 2n

where &, and ¢, are the expected values for the in-plane translations in

directions x and y, and o, is the SD in the translations in either direction.
Thereby, prior knowledge that large origin offsets are less likely than

small offsets is translated in an effective downweighting of larger offsets in

the probability calculations of all possible orientations. Although a similar
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Figure 10.4 The PDF of a noisy image as a function of its relative orientation with
respect to a reference image. (A) X, a rotated and noisy version of reference image A
from Fig. 10.3A is shown. (B, top panel) The probability P(X;|¢, @) of observing X;
given a model O that comprises image A is shown (on an arbitrary scale) as a function of
the relative orientation ¢. The bottom panel shows RyA, that is, image A rotated
according to ¢. Note that P(Xj|¢, ©) is highest when ¢ corresponds to the correct
orientation of X.

term may also be incorporated into maximum cross-correlation approaches
(Sigworth, 1998), this is not common practice in conventional approaches
to the alignment of cryo-EM images. Instead, one often expresses this prior
knowledge in a less powerful way: by limiting the searches for the optimal
offsets to a user defined maximum value in all directions.

From Egs. (10.17) and (10.18), we can see that @ = (4, 7, &, &, 04,))
and the task at hand is to find those parameters @™"" that maximize the
marginal-likelihood function as defined in Eq. (10.16).

2.5. The EM-ML algorithm

The EM-ML algorithm is a general tool to find MLEs for incomplete data
problems (Dempster ef al., 1977). The intuitive idea behind this algorithm is
an old one. Because one does not know parameter estimates & nor the
hidden variables ), one iteratively alternates between estimating both. For a
given set of model parameters @ one estimates the hidden variables, for the
resulting hidden variables one finds the best model parameters, and one
repeats this process until the model parameters no longer change.

However, rather than finding the best ) given an estimate @ at the nth
iteration, the EM—ML algorithm computes a distribution over all possible
values of . To this purpose, in the so-called expectation (E) step one first
calculates the expected value of the complete-data log-likelihood function
with respect to the missing data ), given the observed data X and the
current parameter estimates @
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Q(0,0") = Ey y¢[log P(X,Y|0)]

) (10.19)
= Jyp(y])d@(” )log P(X|Y, ©)P(Y|©)dY

Here, P(Y|X, ™) is the conditional probability of the missing variables in
terms of the observed measurements and the current model parameters,
which is calculated using Bayes’ rule:

p(x|y,e")p(yem)

p(Y|x,0") = .
(y| ) ) ij(XD?,@(”))P(Jfl@(”))dy

(10.20)

The integration of P(V|X, @) over all possible values of ) represents the
above-mentioned distribution of the hidden variables. Given this distribu-
tion, in the subsequent maximization (M) step one computes new estimates
for the model parameters by maximizing the corresponding expectation:

Ot = argmax Q(O,0"). (10.21)
)

The new model parameters are then used for the next E-step and the
process is repeated as necessary. It can be shown that each iteration is guaran-
teed to increase the log-likelihood and the algorithm is guaranteed to converge
to a local maximum of the likelihood function (Dempster ef al., 1977).

2.6. An example of EM-ML in cryo-EM

For the example of aligning a set of structurally homogeneous images
described above, the E-step of the EM—ML algorithm yields:

N

Q(6.01) =3 [ P41 0} 0g( (6. ©)(410)) ¢ (1022

i=1

which can be rewritten by substitution of Egs. (10.17) and (10.18) and by
separating terms C that are not related to A:

N

ﬂ n 1
0(0.07) =3 P91, 0) {151 X - Roa + C .

i=1

(10.23)
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In the subsequent M-step one maximizes Q(@, @) with respect to the
model parameters. From Eq. (10.23), it can be readily seen that obtaining
new estimates for A corresponds to solving a weighted least-squares prob-
lem with weights P(¢)| X;, @). The result is a weighted average comprising
contributions from all possible values of ¢ for every image X;:

1 N
A1) — NZJ _ @(’Q)R;X;dqﬁ. (10.24)
¢

i=1

The concept of calculating A”" Y as a probability weighted average is
turther illustrated in Fig. 10.5. All other model parameters are updated
using similar probability-weighted average calculations.

2.7. Comparison with conventional methods

It is interesting to compare the EM—ML approach with conventionally more
popular methods in cryo-EM. In particular, it has been common practice to
include the hidden variables as part of the unknown model parameters. For
the example of single-reference 2D-alignment described above, the model
thereby comprises the estimate for the underlying signal (A4) and the optimal
orientations for each of the individual observations (¢, for i = 1, ..., N).
One typically minimizes the following least-squares target:

N
SN - Ry AP, (10.25)
=1

B ¢ ——
R;le + + .[fx + + + + +
T T
£
s T A(Il+])
X; {:‘ R'X, + -+ + + + B A= ,{3

Figure 10.5 Reference image calculation by probability-weighted averaging.
(A) Three noisy versions of reference image A from Fig. 10.3A in different orientations
(X;, with i = 1, 2, 3). (B) Images Ry — !X, for all sampled ¢. The opacity of the images
is used to illustrate the weight P(¢)|X;, @) in the weighted average calculation that
produces the updated estimate of the reference A®" Y, see Eq. (10.24). Note that X,
corresponds to the same image that was shown in Fig. 10.4A and that the columns
correspond to the same orientations as in Fig. 10.4B.
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by iteratively alternating between estlmatmg the underlymg signal and
estimating the orlentatlons For a given estimate A, one calculates the
optimal orientation ¢;" for each 1mage X; as the one that minimizes the
squared difference ||X; — Rgy; A||>. Then, one calculates a new estimate for
the underlying signal by:

Al Z Ry X;. (10.26)

The orientation that minimizes the squared difference term mentioned
above in turn maximizes the inner product between images X; and Ry, A.
This inner product is also called the cross-correlation and hence the term
“maximum cross-correlation” approach.

Comparison of Eqgs. (10.25) and (10.16) illustrates that the maximum
cross-correlation and ML approaches pursue different objectives. The prin-
cipal difference lies in the marginalization over the hidden variables in the
latter. Consequently, in the ML approach model parameters are calculated
as probability-weighted averages over all possible orientations, while only
the “best” orientation is considered for each image in the maximum cross-
correlation approach, cf. Egs. (10.26) and (10.24).

The advantages of the ML approach appear at low signal-to-noise ratios.
The higher the level of noise in the data, the higher the number of false
peaks that occur in the cross-correlation function. Thereby, the orientations
that maximize the cross-correlation function are less likely to reflect the
optimal ones. The statistical description of the noise in the ML approach
allows to deal with these ambiguities in the cross-correlation function.
Correspondingly, the ML approach will yield better results than the maxi-
mum cross-correlation approach for data with high levels of noise. Interest-
ingly, the two approaches become equivalent in the absence of noise: when
o approaches zero, probablhty distributions P(¢)|X;,0") become delta
functions centered at ¢,;". In other words, the maximum cross-correlation
approach may be considered as a special case of the ML method that ignores
the presence of noise in the data.

3. EM-ML APPROACHES IN CRYO-EM

The EM—ML algorithm has been applied to a variety of tasks in cryo-
EM image processing. Although the actual applications differ widely, the
theoretical framework described in the previous section may be employed
to put all these approaches on a common basis. Most approaches share
the assumption of independent Gaussian noise in the data. Thereby, the
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optimization strategy typically remains the same and the differences
between the existing approaches lie in the unknown model parameters

() and the hidden variables ().

3.1. Single-particle analysis

As described in the example above, it was Sigworth (1998) who introduced
the concept of optimizing a marginal-likelihood function to the field. His
approach to aligning a structurally homogeneous set of 2D images was
tested on simulated data that were in accordance with the assumption of
white and Gaussian noise. These simulations showed that the ML approach
has a reduced sensitivity toward the choice of the starting model and allows
recovering the underlying signal from much noisier data than the maximum
cross-correlation method. This chapter was followed by a series of con-
tributions applying similar ideas to single-particle analysis (Table 10.1).
First, Pascual-Montano et al. (2001) described a neural network for the
classification of a set of prealigned 2D images called kerdenSOM, for kernel
density self-organizing map. In this work, the data model comprises multi-
ple 2D models (A, with k=1, ..., K) and the assignments k; of the
experimental images to these models are treated as hidden variables. This
results in a ML variant of the conventional k-means classifier (see Frank,
2006), where experimental images are not assigned to a single model but
contribute to all models with varying weights. In addition, this contribution
considered the K models to be arranged in a 2D map and defined a
regularization term to the log-likelihood in order to impose similarity
between neighboring models in the map. Thereby, the behavior of a neural

Table 10.1 An overview of EM-ML approaches in single-particle analysis

Model parameters  Hidden variables
Approach Data model () y
Sigworth Xi=Ryp A+ G, A0,¢,¢, 04 0y Xy Vi

(1998)

kerdenSOM X; = A + 0G; A, 0, T, k;
ML2D X =Ry Api + 0G; Ap, 0, My, Oy ki, o, Bis vir X0 yi
ML3D Xi = Pyi Vii + 0G; Vi, 0, T, O,y ki, o, Bis vir X4 yi
MLn3D Xi=5iPgp;i Vi + 0 Gi+n; Vi, 0, Ty, Oy, 5 115 Ry oy, By 71 X1, i

Symbols X;, Ry, 4, 7, o, X, yis [ f),, and 0, were defined in the section that provided the theoretical
basis. Subscripts k, with k = 1, ..., K are used to indicate the kth model in multireference refinement
schemes. Then T, are prior probabilities of that model and k; indicates that model k is the correct one for
the ith observed image. 1, indicates a 3D model and Py, is a projection operation, with ¢; = (a;, B, 75
X;, y;) comprising three Euler angles and two in-plane translations. s; and #; are multiplicative and additive
parameters for each ith image.
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network, or self-organizing map, was achieved. This has the additional
advantage that K does not necessarily need to reflect the number of different
classes in the data. The efficiency of this approach was demonstrated for
cryo-EM images of large T-antigen and for rotational spectra of negatively
stained particles of hexameric helicase G40P.

Second, Scheres et al. (2005a) proposed a 2D multireference alignment
scheme, called ML2D. As for the kerdenSOM algorithm, in this algorithm @
comprises multiple 2D images A, with k = 1, ..., K. In this case, however, the
problems of alignment and classification were tackled simultaneously by treat-
ing both the in-plane transformations ¢; = (&;, x;, y;) and the class assignments
k; as hidden variables. The ML method was again shown to yield much better
model estimates than the maximum cross-correlation approach for simulated
data with white Gaussian noise. It was also shown that these advantages were
strongly reduced for simulated data with dependent noise. Nevertheless, for
experimental cryo-EM images the ML2D algorithm was shown to be robust to
the choice of the initial starting models and reference-free alignments and
classifications could be obtained by starting the multireference alignments from
averages of random subsets of the unaligned images. Application of this
approach to cryo-EM images of large-T antigen particles led to the first-time
visualization of an overhanging dsDNA probe in this complex.

The next EM—ML approach to single-particle analysis concerned a 3D
multireference refinement scheme (Scheres et al., 2007a). In this case, K 3D
reference maps 1, are refined simultaneously against a structurally hetero-
geneous set of projections. The hidden variables of this problem comprise
six parameters for every image: its class assignment k; and its 3D orientation
as described by three Euler angles and two in-plane translations ¢; = (;, f;,
Vis Xis Vi)

For 3D refinements, the maximization step of the EM—ML algorithm is
more complicated than in the 2D case. By expressing the 3D electron densities
of the K models as weighted sums of smooth radial basis functions called blobs
(Marabini et al., 1998), the reconstruction problem was expressed as a system of
linear equations. Optimization of the log-likelihood function was shown to
correspond to finding a weighted least-squares solution to the reconstruction
problem, for which purpose a modified version of the algebraic reconstruction
technique (Eggermont ef al., 1981) was developed.

Again, the ML approach was shown to be robust to high levels of noise
and relatively insensitive to the starting model. Most significantly, it allowed
separation of projections from distinct 3D structures by starting multirefer-
ence refinements from random variations of a single, strongly low-pass
filtered initial model. Thereby, the classification protocol, termed ML3D,
is unsupervised as it does not depend on any prior knowledge about the
structural variability in the data. Its efficiency and potentially wide applica-
bility were demonstrated for two challenging cryo-EM data sets. ML3D
classification separated projections of 70S Escherichia coli ribosomes in a



Overview of ML Methods 281

ratcheted conformation and in complex with elongation factor G (EF-G)
from unratcheted ribosomes without EF-G. Projections of large-T antigen
were classified according to various degrees of bending along the central axis
of the dodecameric complex.

More recently, ML3D classification was observed to yield suboptimal
results in certain cases. For structurally heterogeneous cryo-EM data sets on
E. coli 70S ribosomes and on human RNA polymerase II, rather than
separating different conformations reconstructions at distinct intensities
were obtained. The origin of the problem was found in a typical cryo-
EM preprocessing step: image normalization.

In the normalization process, one aims to minimize additive and multiplica-
tive variations in the signal among all images. Since the abundant noise makes it
impossible to normalize the signal itself; it is common practice to normalize the
noise instead. However, variations in signal-to-noise ratios or artifacts in the
images often lead to small, remaining variations in the signal. These variations
can often be ignored in conventional refinement schemes because normalized
cross-correlation coefficients are invariant to additive or multiplicative factors.
In ML refinements, however, the squared distance metric inside the PDF
calculation, see Eq. (10.15), is highly sensitive to these variations.

To reduce the corresponding sensitivity of the ML approach to normal-
ization errors, the model parameter set @ was extended with a multiplica-
tive and an additive factor for the signal in each experimental image
(s;, respectively, n; in Table 10.1). For both the 70S ribosome and the
RNA polymerase II data sets, the corresponding approach, which was
termed MLn3D, successfully classified distinct structural states (Scheres
et al., 2009b). For the 70S ribosome, this resulted in a previously unobserved
conformation with spontaneous ratcheting and two tRINAs in hybrid states
(Julian ef al., 2008).

3.2. Icosahedral viruses

The computation of structures having icosahedral symmetry from cryo-EM
images is a particular case of single-particle analysis. However, because of
the high-order rotational symmetry of the icosahedral group, several special
approaches have been developed, which are described in this section.
Incorporation of the icosahedral symmetry is often done by representing
the electron scattering intensity of the particle as a weighted sum of basis
functions. Because all the operations in the icosahedral group are rotational
operations, it is most natural to use the spherical coordinate system (r, 0, ¢)
in which case the symmetry constrains the angular behavior of the basis
functions (i.e., 0 and ¢) but not the radial behavior of the basis functions
(i.e., r). The usual choice is to use basis functions that are a product of
angular and radial functions where the angular part is a linear combination
of spherical harmonics as introduced by Laporte (1948) and developed in
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subsequent years by many authors including Zheng and Doerschuk (1996).
The experimental images are roughly linear transformations of the
unknown weights in the weighted sum of basis functions, which is impor-
tant for practical computation of the 3D reconstruction. However, as in the
general single-particle case described above, this 3D reconstruction is
dependent on unknown parameters, for example, the projection orienta-
tions ¢; and class assignments k;. Different types of MLEs result depending
on the treatment of these parameters.

In the original work of Vogel et al. (1986), Provencher and Vogel
(1988), Vogel and Provencher (1988), which resulted in the “ROSE”
algorithm, a Gaussian MLE is used which estimates both the weights in
the weighted sum of basis functions and the parameters that determine the
linear transformation. That is, rather than treating the unknown projection
orientations ¢; and class assignments k; as hidden variables as described for
the general single-particle case, this approach includes these parameters in
the model @. The advantage of this approach is that no probabilistic
information on the behavior of the parameters is required with the disad-
vantage of having to solve a difficult optimization problem, especially as the
number of images grows.

This type of approach was further developed by Doerschuk and Johnson
(2000) and Yin ef al. (2001, 2003), who proposed to treat the projection
orientations and class assignments as hidden variables ()/) and use an EM—ML
algorithm to optimize the corresponding marginal likelihood function of
Eq. (10.14). In addition, these authors use alternative radial basis functions
that are linear combinations of spherical Bessel functions. These functions
have two advantages over the Laguerre polynomials used in the ROSE
algorithm. The first advantage is that they are nonzero only for a range of r,
which allows straightforward masking of the 2D images and 3D reconstruc-
tion. The second advantage is that the 3D Fourier transform of the product of
the angular and radial basis functions can be computed symbolically, so the
projection slice theorem can be used to compute the projection of the
electron scattering intensity in an arbitrary direction. Kam and Gafni (1985)
describe an alternative approach using much of the same mathematics for the
description of the electron scattering intensity. However, the optimization
problem that is solved does not appear to be a ML problem.

The approach of locking symmetry into the basis functions is general
although, depending on the number of operators in the symmetry group,
it is more or less valuable in terms of reducing computation. Zheng and
Doerschuk (1996) describe the necessary basis functions for all the platonic
symmetries. Prust ef al. (2009) describe the application of the approach to
the rotational symmetry of the tail of infectious bacteriophage P22. Chen
(2008) describes the application of the approach to objects with helical
symmetry using standard basis functions (Moody, 1990), Lee et al. (2009)
describe new basis functions focused on helical symmetry, and Lee (2009)
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uses these basis functions to solve 3D reconstruction problems for objects
with helical symmetry. Even in the case where there is no symmetry,
describing the electron scattering intensity of the object by a weighted
sum of basis functions is possible. Approaches based on weighted sums of
basis functions for this case appear to be essentially the same as the single-
particle methods described above.

Besides providing numerical values for each of the unknown parameters,
ML theory also provides some information on the size of the errors. The key
result (Efron and Hinkley, 1978) is that the error between the MLE and the
true values of the model parameters is approximately Gaussian distributed
with mean vector 0 and a covariance matrix that is the negative inverse of
the matrix of mixed second-order partial derivatives, that is, the Hessian, of
the log-likelihood function with respect to the model parameter vector.
However, there are at least two important challenges in using this result in
cryo-EM. First, it may be more or less difficult to connect these error
estimates with the most common method for measuring the performance
of a cryo-EM 3D reconstruction, which is the Fourier shell correlation
(FSC) (Harauz and van Heel, 1986). Second, in the case where the connec-
tion can be made, it is quite likely that there are computational complexity
issues since the number of model parameters is typically so large that
computation of the Hessian matrix is impractical. Still, these ideas have
been used to create a ML variant of the FSC for a virus problem with
symmetry, specifically, in the ab initio 3D reconstruction of the tail of the
infectious bacteriophage P22 (Prust ef al., 2009). In this situation, the first
challenge was solved by a Monte Carlo procedure and the second challenge
was not present because the resolution was low, so the number of para-
meters was relatively small. In a higher resolution problem, it is probably
necessary to make a diagonal approximation to the Hessian matrix.

The theory in the previous paragraph describes performance once the
data are recorded. An analogous theory may be used to “predict” perfor-
mance before any data are recorded. Given a PDF P(X|0), the Cramer-
Rao bound (e.g., Marzetta, 1993) will give the minimal achievable variance
for any unbiased estimator, including the unbiased MLE. Thereby, one
could design the optimal experiment by computing this bound for different
experimental strategies and choosing the experiment that makes the bound
as small as possible. The required calculations are similar to the calculations
described in the previous paragraph and have been demonstrated in a
tentative way in Doerschuk and Johnson (2000).

3.3. 2D crystallography

Electron crystallography is a cryo-EM method that has provided the highest
resolution structures of protein assemblies. Because the penetration distance
of electrons is limited to approximately 100 nm, the acquisition of data from
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3D protein crystals—as are used for X-ray crystallography—is not practical.
However, planar 2D crystals, composed of a single layer or double layer of
proteins, can be imaged in the electron microscope. Of particular interest
are 2D crystals formed of membrane proteins embedded in a lipid bilayer
membrane, as analysis of these crystals provides the most reliable structural
information for these proteins. For further details on 2D crystallization and
the subsequent structure determination process, the reader is referred to
Chapter 4 of this volume and Chapter 5 of Vol. 483.

In a 2D crystal, there are fewer lattice contacts than in 3D crystals and the
crystal lattice often shows substantial disorder. Fortunately, in the electron
microscope an image can be formed of a 2D crystal and the lattice disorder
can be removed by computational “unbending” of the crystal image. In this
process, the micrograph is analyzed to locate the center of each unit cell. To
the extent that its center deviates from an ideal lattice, each unit cell is then
shifted to bring it into the proper position.

In the end, the goal of analysis of a crystal image is to estimate the 2D
density of a unit cell of the lattice. The “unbending” method is equivalent
to a conventional alignment and averaging of 2D images, and a superior
alternative is ML estimation of the unit-cell image as in Eq. (10.24). Zeng
et al. (2007) implemented the EM—ML algorithm, where each data image X;
is a unit cell in the micrograph, and the transformations ¢ are constrained to
small translations from lattice points and to a small angular deviations from
the lattice directions. That is, the hidden variables ¢; are modeled as
Gaussian-distributed with small SDs which are estimated as part of the
model. The result is improved resolution in structures obtained from 2D
crystals having substantial disorder. In the ML estimation, it was assumed
that the disorder in the crystals was confined to in-plane translations
and rotations; however, a further extension can be imagined in which a
3D algorithm similar to ML3D could be employed to account for small out-
of-plane deviations of the unit cells as well. In addition, one might envision
improvements by relating the disorder parameters of neighboring unit cells
to each other, as crystal disorder is often, to some extent, a continuous
phenomenon.

3.4. Tomography

In electron tomography a reconstruction of a unique 3D object, for exam-
ple, an entire cell, is obtained by combining a series of projections that are
recorded at difterent tilt angles. The process of tomographic reconstruction
is described in more detail in Chapter 14, and its application to HIV-1 is
described in Chapter 14 of Vol. 483. Electron tomograms are typically
extremely noisy because the electron dose over the whole tilt series needs
to be limited in order to prevent radiation damage. Still, averaging over
multiple copies of the same macromolecular complex may improve the
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signal-to-noise ratios provided that the individual subtomograms may be
aligned (and classified in the case of structural heterogeneity). Apart from
the increased dimensionality of the data vectors, subtomogram averaging is
conceptually very similar to 2D averaging approaches in single-particle
analysis. Again, the unknown orientations ¢; = (%;, i, Vi, xi, yi» 2) and/or
the class assignments k; of the individual subtomograms may be treated as
hidden variables and the EM—ML algorithm may be employed to obtain
MLEs of the underlying signals.

The first reported ML approach to subtomogram averaging was the
application of the kerdenSOM algorithm to aligned subtomograms of insect
flight muscles (Pascual-Montano ef al.,, 2002). In this case, as for the
classification of 2D images described above, the class assignments k; are
treated as hidden variables and an additional regularization term to the
marginal log-likelihood function results in a neural network-like behavior
of the K output classes. However, compared to 2D averaging an additional
complication arises in subtomogram averaging that was not taken into
account in the kerdenSOM approach. Due to experimental limitations on
the tilt angle, electron tomography data cannot be measured in its totality.
In the case of single-axis tilting, a wedge-shaped region in Fourier space
remains experimentally inaccessible. This region is commonly referred to as
the missing wedge and subtomogram averaging procedures that do not take
the missing wedges into account have been observed to yield suboptimal
results (Walz et al., 1997). A variant of the kerdenSOM algorithm that takes
missing wedges into account was mentioned in a structural study of cadher-
ins (Al-Amoudi et al., 2007), but details concerning this algorithm were
never described.

Conventional alignment and classification approaches for subtomograms
have typically restricted the cross-correlation measure to the observed
regions in Fourier space. Subtomogram averaging may then be performed
by weighted averaging, that is, by dividing the sum of all subtomograms by the
times that each point in Fourier space has been measured. However, the
EM-ML algorithm itself may provide a more elegant solution to the missing
wedge problem, since this algorithm was ultimately designed to deal with
incomplete data problems. Apart from the unknown orientations ¢; and the
class assignments k;, one may also treat the data points inside the missing
wedges as hidden variables. An EM-ML algorithm that optimizes the
corresponding marginal log-likelihood function was recently introduced
(Scheres et al., 2009a). This algorithm “estimates” the missing data points by
calculating probability-weighted averages over all possible values, just as it
does for the orientation and class assignments. However, the possible values
of each of the missing data points range from minus infinity to infinity,
which obviously prohibits the use of numerical integrations. Fortunately, an
analytical solution exists where the missing data points for each individual
subtomogram are replaced by the corresponding values in the (oriented)
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reference to which the subtomogram is compared. In this way, the incom-
plete experimental data are complemented with the currently available
information from the model. Therefore, this algorithm does not need to
divide the sum of all subtomograms by the number of times each point in
Fourier space was observed, which prevents numerical instabilities for data
points that were (almost) never observed.

Similar to the ML2D approach, the EM-ML algorithm for subtomo-
gram averaging tackles the problems of alignhment and classification simul-
taneously through a multireference refinement scheme (with hidden
variables ¢; and k;). Moreover, the algorithm may be run in a completely
unsupervised manner by starting the multireference refinements from
averages of random subsets of subtomograms in random orientations. The
advantages of this approach were illustrated using simulated data and refer-
ence-free class averages were obtained for experimental subtomograms of
groEL and groEL/groES complexes. In addition, the same approach was
shown to be effective for the reference-free alignment of random conical tilt
(RCT) reconstructions from single-particle experiments on p53. Note that
just like subtomograms, RCT reconstructions are 3D data vectors with
missing regions in Fourier space, although RCT reconstructions have
missing cones rather than missing wedges. An alternative ML approach to
the alignment of RCT reconstructions was mentioned by Sander ef al.
(2006), although also for this algorithm the details have not yet been
presented.

4. THE STATISTICAL DATA MODEL

The data model that underlies the PDF calculations plays a crucial role
in the EM-ML approach. The PDF defines the log-likelihood target function
and is used to calculate the probability distributions over the hidden variables
in the model updates. If the model does not describe the data accurately, the
benefits of the statistical approach may be lost altogether. All approaches
described above share similar assumptions about the signal and they all assume
that the noise is independent, additive, and Gaussian. As outlined above, this
model results in a computationally attractive algorithm, but how accurately
does this model describe cryo-EM images?

Thin samples of biological molecules fulfill the weak phase approxima-
tion, the theory of image formation which is used to describe the phase-
contrast images of weakly scattering specimens. Under this approximation,
the contrast in cryo-EM images is linearly related to the projected object
potential. The latter justifies the use of standard X-ray integrals in the
projection operators of the 3D approaches described above. The same theory
is also used to derive imaging effects of the electron microscope in the form of
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the contrast transfer function (CTF). The accuracy of this model, at least for
thin specimens, is reflected in the (near-)atomic resolutions that have been
obtained with it for single particles and 2D crystals (Cheng and Walz, 2009).
However, of all the ML approaches described above only those for icosahe-
dral viruses (e.g., Yin et al., 2003) include an explicit description of the CTF.
All the other approaches simply ignore the CTF or employ suboptimal CTF
correction strategies (e.g., Zeng et al., 2007). Consequently, these approaches
may fail to provide good model estimates in cases where the CTF plays an
important role, as is often the case in medium-high-resolution refinements.
For more details on image restoration and the importance of CTF correction,
the reader is referred to Chapter 2.

The noise term in the data model is used to represent all features in the
observed images that are not explained by the description of the signal.
In cryo-EM images the major source of noise is shot noise. This type of noise
follows a Poisson distribution and arises from statistical fluctuations in the
small number of imaging electrons (typically 10-20 e/A%). EM—-ML algo-
rithms for Poisson distributions are computationally more complicated than
those for Gaussians. But as the Poisson distribution approaches the Gaussian
for larger numbers of imaging electrons, the latter provides a good approxi-
mation for pixels that span many squared Angstroms (Sigworth, 2004).
Apart from the abundant shot noise, several other sources of noise exist.
Structural noise arises from the irreproducible density of the ice that sur-
rounds the particle or the carbon layer that is used to support it. Also,
structural variability in the particles that is not described by the data model
may be considered as a source of structural noise. Detector noise arises from
the stochastic nature of the interactions of electrons with the detector—the
digital camera or photographic film which is used to acquire the image. The
result is a random variation in both the point-spread function and amplitude
of the single-electron response of the detector. Baxter ef al. (2009) experi-
mentally measured the relative contributions of the different types of noise.
For typical cryo-EM images on a well-behaved ribosome sample, they
found the combination of shot noise and detector noise to be one order
of magnitude larger than the structural noise. The latter was found to be
approximately of the same power as the underlying signal in the images.
Taken together, one may assume that, at least for pixels that span multiple
squared Angstroms, Gaussian distributions describe the combination of the
various independent sources of noise in cryo-EM images reasonably well.

The assumption of independent noise may be more problematic. The
independence between all pixels was used in Eq. (10.11) to relate the PDF of
an entire image with the PDFs of the individual pixels, and ultimately allows for
fast calculations of the probabilities. Independent noise is uncorrelated
from pixel to pixel and has a flat power spectrum. Therefore, it is also called
white noise. Although shot noise is intrinsically white, the background
noise in a cryo-EM micrographs is typically not white for several reasons.
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Most importantly, there is a fall-off with resolution of both the signal and the
noise due to the point spread functions of the microscope and the electron
detector. In addition, various sources of structural noise, such as density for the
ice or carbon support or structural variations in the particles are expected to
have strong correlations among nearby pixels. [gnoring these correlations in the
PDF calculations will lead to a suboptimal behavior of the EM—ML approach.
Two approaches to dealing with nonwhite noise in cryo-EM images have
been proposed. In the most straightforward approach, the data are adapted to
the white-noise model by so-called prewhitening of the observed images
(Sigworth, 2004; Zeng et al., 2007). In this preprocessing step, the higher
frequencies in the images are boosted based on an estimate for the power
spectrum of the noise. The resulting images have a flat power spectrum and are
processed using the conventional ML approach. Alternatively, the model itself
may be adapted to describe nonwhite data. The latter was achieved by
reformulation of the PDF in the Fourier domain. Assuming independent,
Gaussian noise on all Fourier components, the PDF may be calculated in a way
that is highly similar to Eq. (10.11) but involves Fourier components rather
than image pixels. The uniqueness of the expression in the Fourier domain lies
in the possibility to estimate the SD of the noise (¢) as a function of spatial
frequency, thereby explicitly modeling nonwhite noise. In addition, the
formulation in the Fourier domain allows for a convenient incorporation of
the CTF into the data model. This approach was called MLF, for maximum
likelihood in the Fourier domain, and it was implemented for the problems of
2D and 3D multireference refinements in single-particle analysis (Scheres et al.,
2007b). For simulated CTF-filtered images, the MLF approach was shown to
be superior to the ML approach for white noise and its usefulness in the
experimental situation was illustrated for structurally heterogeneous cryo-
EM data sets on 70S E. coli ribosomes and large-T antigen complexes.
Perhaps, the most basic of all assumptions in the data models discussed
above is the one that is violated most often. By including an image in the data
set one assumes that it contains signal. However, especially for smaller
particles (with molecular weights well under 1 MDa) it is often extremely
difficult to distinguish genuine particles of interest from artifacts in the
micrographs. Consequently, many cryo-EM data sets contain large amounts
of particles that do not contain a common underlying signal. This problem
typically becomes more severe with the use of (semi-) automated particle
selection procedures, which are still outperformed by expert human beings
(Zhu et al., 2004). Currently, none of the available ML approaches can
distinguish between genuine and artifactual particles, but one approach
does aim to provide robustness against outliers in the data (Scheres and
Carazo, 2009). This approach uses t-distributions, which have wider tails
than Gaussians, to accommodate atypical observations. The resulting algo-
rithm downweights images with relatively large residuals. However, appli-
cation to cryo-EM images did not show clear advantages over the Gaussian



Overview of ML Methods 289

algorithm, probably because typical artifacts in the data have relatively
small residuals compared to the high levels of noise.

5. REDUCING COMPUTATIONAL REQUIREMENTS

Perhaps, the major obstacle to a more wide-spread use of the EM—ML
approach in cryo-EM image processing is currently its computational load.
For many applications, the exhaustive integrations over the hidden variables
in the expectation step require large amounts of computing time. For exam-
ple, in single-particle analysis the integrations over the 3D rotations and in-
plane translations span a five-dimensional space that is extended to even six
dimensions in the multireference case. That is, for each 3D rotation (;, f5;, )
and each class k;, all J possible in-plane translations (x;, y,) are to be considered.
Conventional approaches typically divide this problem into several lower-
dimensional ones, for example, by searching in-plane translations only for a
single 3D rotation. Although this strategy is not guaranteed to converge,
it does provide major speed-ups, for example, of two orders of magnitude,
compared to the exhaustive integrals in the ML approach. Consequently, the
latter has become known as a computationally expensive technique.

Several contributions have been made to reduce the computational
requirements of ML approaches in cryo-EM. Two approaches for single-
particle analysis are based on the observation that many of the alignment
parameters give rise to near-zero probabilities, especially when the algorithm
nears convergence (Scheres et al., 2005b; Tagare et al., 2008). Consequently,
the ML approach can be speeded up considerably by domain reduction strate-
gles, where the integrals over the hidden variables are restricted to those
alignments that contribute significantly to the weighted averages.

The first proposal to domain reduction involved skipping part of the
integrations over all in-plane translations (Scheres ef al., 2005b). In this
approach, optimal translations from the previous iteration are used to
calculate probabilities for precentered images as a function of the in-plane
rotation for each 2D reference (or projection of the 3D references). Then,
for those in-plane rotations where this probability is smaller than a cut-oft
value times its maximum, the integration over all translations is skipped.
Although in a strict sense the resulting algorithm is not guaranteed to
converge, in practice a sevenfold acceleration could be obtained for a
small 2D problem without notably changing the convergence behavior.
For larger 3D problems (Scheres et al., 2007a), the same approach was
estimated to yield 10-20-fold accelerations (unpublished results).

Even higher speed-ups of 30—60 times are reported by combining a
related domain reduction strategy with an additional grid interpolation strategy
(Tagare et al., 2008). The latter is based on the observation that the squared
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difference terms in Eq. (10.17) vary much more smoothly with ¢ than the
probability terms themselves. Consequently, one may calculate the squared
difference terms on a relatively coarse grid and use B-spline interpolation to
evaluate the corresponding values on a much finer grid. A similar approach
had previously been proposed for the maximum-seeking problem in conven-
tional cross-correlation-based strategies (Sander ef al., 2003).

While domain reduction and grid interpolation provide approximations
of the original EM—ML algorithm, the ML approach for icosahedral viruses
in (Doerschuk and Johnson, 2000) may be reformulated in an exact manner
that 1s much faster (Lee ef al., 2007). In the original approach, the spherical
harmonics themselves already provide a highly efficient way to sample 3D
rotations and to restrict the resolution of the model. Still, using an idea from
Navaza (2003), the same problem may be expressed more efficiently by
application of a linear transformation to the observed data, which allows
expressing the expectation step in terms of lower-dimensional integrations
over the hidden variables. Although the resulting approach thus involves an
additional precomputation step, each expectation step itself is accelerated up
to 25 times and has reduced storage complexity.

6. OuTLOOK

With the rapid increase of available computing power and
continuing efforts to accelerate EM—ML approaches, the applicability of
ML methods is expected to increase significantly in the near future. Already
with relatively modest computer clusters, which will be replaced soon by
multicore desktop computers, medium-resolution single-particle multire-
ference refinements are feasible within the time span of only a few days
(also see Chapter 11).

Preliminary investigations further indicate that the EM—ML approach
may be particularly suitable for acceleration by general purpose computing
on the graphical processing unit, which provides high-computing power at
relatively low cost (Tagare, Sigworth ef al., in preparation).

In addition, apart from continuing developments in domain reduction
and grid interpolation strategies, one may employ algorithms to optimize
log-likelihood targets with faster convergence rates than the classical
EM-ML algorithm. For example, similar to block-Kaczmarz methods for
iterative reconstruction (Eggermont ef al., 1981), one may perform partial
expectation steps by processing the experimental images in subsets, or blocks.
Thereby, convergence is speeded by incorporating new information faster
into the model (Neal and Hinton, 1998). In single-photon emission com-
puted tomography and positron emission tomography, this approach has
resulted in an order of magnitude speed-up (Hudson and Larkin, 1994), and
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investigations into the efficiency of a similar approach for cryo-EM single-
particle analysis are currently underway (Scheres ef al., unpublished results).

However, the most important future contributions are not expected from
making ML methods faster but from efforts to make them better. As explained
above, the statistical data model and in particular the assumptions about the noise
in the data remain apt for improvement and also the robustness to artifactual
particles in the data still needs to be improved. Moreover, there are various
aspects of ML theory for which applicability to cryo-EM image processing
remains open for more in-depth investigations. While structure validation and
resolution assessments remain critical areas of research in the field, ML theory
promises reliable error estimates on the model parameters through the use of the
Hessian to the log-likelihood. The first indication that these estimates may
indeed be useful is the successful definition of a ML equivalent of the FSC as
recently explored by Prust ef al. (2009). In addition, Cramer-Rao lower bounds
to the log-likelihood function may be employed to design optimal experimental
setups, as was tentatively explored in (Doerschuk and Johnson, 2000).

Finally, there may be improvements to be gained from using MAP
estimation instead of ML estimation. As was mentioned in conjunction
with Eq. (10.1), the inclusion of prior information in the form of a prior
probability P(®) should improve the quality of final models. The advantage
of MAP estimation appears when the amount of experimental data is
limited, so that the prior probability term makes a substantial contribution.
An important example of a prior probability function, well known in X-ray
crystal structure determination, is one that penalizes all 3D models in which
the density outside the particle boundary (the “solvent” or “ice” density of
the map) is nonzero. This choice of a prior probability function is the formal
basis of the well-known “solvent flattening” process.

In summary, we have seen that the theory of maximum-likelihood
estimation provides improved methods for the processing of cryo-EM
data. Of particular interest is its flexible theoretical framework, which allows
the limitations of experimental data—heterogeneity, noise, missing wedges,
and so on—to be readily and rigorously modeled. With these data models,
the process of determining macromolecular structures is both improved and
placed on a firmer statistical foundation.
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